Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
- URL: http://arxiv.org/abs/2410.21306v1
- Date: Fri, 25 Oct 2024 01:17:02 GMT
- Title: Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
- Authors: Farid Ariai, Gianluca Demartini,
- Abstract summary: Natural Language Processing is revolutionizing the way legal professionals and laypersons operate in the legal field.
This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 148 studies, with a final selection of 127 after manual filtering.
It explores foundational concepts related to Natural Language Processing in the legal domain.
- Score: 4.548047308860141
- License:
- Abstract: Natural Language Processing is revolutionizing the way legal professionals and laypersons operate in the legal field. The considerable potential for Natural Language Processing in the legal sector, especially in developing computational tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 148 studies, with a final selection of 127 after manual filtering. It explores foundational concepts related to Natural Language Processing in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document length, complex language, and limited open legal datasets. We provide an overview of Natural Language Processing tasks specific to legal text, such as Legal Document Summarization, legal Named Entity Recognition, Legal Question Answering, Legal Text Classification, and Legal Judgment Prediction. In the section on legal Language Models, we analyze both developed Language Models and approaches for adapting general Language Models to the legal domain. Additionally, we identify 15 Open Research Challenges, including bias in Artificial Intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
Related papers
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Towards Grammatical Tagging for the Legal Language of Cybersecurity [0.0]
Legal language can be understood as the language typically used by those engaged in the legal profession.
Recent legislation on cybersecurity obviously uses legal language in writing.
This paper faces the challenge of the essential interpretation of the legal language of cybersecurity.
arXiv Detail & Related papers (2023-06-29T15:39:20Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Language Models as Inductive Reasoners [125.99461874008703]
We propose a new paradigm (task) for inductive reasoning, which is to induce natural language rules from natural language facts.
We create a dataset termed DEER containing 1.2k rule-fact pairs for the task, where rules and facts are written in natural language.
We provide the first and comprehensive analysis of how well pretrained language models can induce natural language rules from natural language facts.
arXiv Detail & Related papers (2022-12-21T11:12:14Z) - LexGLUE: A Benchmark Dataset for Legal Language Understanding in English [15.026117429782996]
We introduce the Legal General Language Evaluation (LexGLUE) benchmark, a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks.
We also provide an evaluation and analysis of several generic and legal-oriented models demonstrating that the latter consistently offer performance improvements across multiple tasks.
arXiv Detail & Related papers (2021-10-03T10:50:51Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - A Dataset for Statutory Reasoning in Tax Law Entailment and Question
Answering [37.66486350122862]
This paper investigates the performance of natural language understanding approaches on statutory reasoning.
We introduce a dataset, together with a legal-domain text corpus.
We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task.
arXiv Detail & Related papers (2020-05-11T16:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.