論文の概要: Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations for Unsupervised Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2410.21322v1
- Date: Sat, 26 Oct 2024 13:59:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:01.528568
- Title: Angel or Devil: Discriminating Hard Samples and Anomaly Contaminations for Unsupervised Time Series Anomaly Detection
- Title(参考訳): Angel or Devil: 教師なし時系列異常検出のためのハードサンプルと異常汚染の識別
- Authors: Ruyi Zhang, Hongzuo Xu, Songlei Jian, Yusong Tan, Haifang Zhou, Rulin Xu,
- Abstract要約: 「無監督時系列異常検出の訓練は、有害な有害な異常汚染と有益なハードノーマルサンプルの識別に常に悩まされている。」
- 参考スコア(独自算出の注目度): 4.767887707515356
- License:
- Abstract: Training in unsupervised time series anomaly detection is constantly plagued by the discrimination between harmful `anomaly contaminations' and beneficial `hard normal samples'. These two samples exhibit analogous loss behavior that conventional loss-based methodologies struggle to differentiate. To tackle this problem, we propose a novel approach that supplements traditional loss behavior with `parameter behavior', enabling a more granular characterization of anomalous patterns. Parameter behavior is formalized by measuring the parametric response to minute perturbations in input samples. Leveraging the complementary nature of parameter and loss behaviors, we further propose a dual Parameter-Loss Data Augmentation method (termed PLDA), implemented within the reinforcement learning paradigm. During the training phase of anomaly detection, PLDA dynamically augments the training data through an iterative process that simultaneously mitigates anomaly contaminations while amplifying informative hard normal samples. PLDA demonstrates remarkable versatility, which can serve as an additional component that seamlessly integrated with existing anomaly detectors to enhance their detection performance. Extensive experiments on ten datasets show that PLDA significantly improves the performance of four distinct detectors by up to 8\%, outperforming three state-of-the-art data augmentation methods.
- Abstract(参考訳): 教師なし時系列異常検出の訓練は、有害な「異常な汚染」と有益な「有害な「正常なサンプル」の区別によって常に悩まされる。
これらの2つのサンプルは、従来の損失に基づく手法が差別化に苦しむ類似の損失挙動を示す。
この問題に対処するため,従来の損失挙動を「パラメータ動作」で補う手法を提案し,異常パターンのよりきめ細かい特徴付けを可能にする。
パラメータの挙動は、入力サンプルの微小摂動に対するパラメトリック応答を測定することによって定式化される。
さらに,パラメータと損失挙動の相補的な性質を活用し,強化学習パラダイム内に実装された2つのパラメータロスデータ拡張法(PLDA)を提案する。
異常検出のトレーニングフェーズでは、PLDAは、情報的ハードノーマルサンプルを増幅しながら、異常な汚染を同時に緩和する反復プロセスを通じて、トレーニングデータを動的に増強する。
PLDAは優れた汎用性を示しており、既存の異常検知器とシームレスに統合され、検出性能が向上する追加コンポーネントとして機能する。
10個のデータセットに対する大規模な実験により、PLDAは4つの異なる検出器の性能を最大8倍に改善し、3つの最先端データ拡張手法より優れていることが示された。
関連論文リスト
- Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies [7.021105583098609]
近年のアプローチでは、通常のサンプルから合成異常を生成するためにドメイン固有の変換や摂動を活用することに重点を置いている。
そこで本研究では,条件付き摂動器と判別器を併用したドメインに依存しない新しい手法を提案する。
我々は,最先端のベンチマークよりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2024-09-16T08:15:23Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
データ拡張のためのトレーニング不要な拡散型In-Distribution Anomaly GenerationパイプラインであるDIAGを紹介する。
従来の画像生成技術とは異なり、我々は、ドメインの専門家がモデルにマルチモーダルガイダンスを提供する、Human-in-the-loopパイプラインを実装している。
我々は、挑戦的なKSDD2データセットに対する最先端データ拡張アプローチに関して、DIAGの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2024-07-04T14:28:52Z) - Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning [30.4548093767138]
一モデル毎の手法は、しばしば限定的な一般化能力に苦しむ。
近年の1モデルオールカテゴリ方式の特徴再構築手法は, 異常サンプルの再構成やぼやけた再構築といった課題に直面している。
本稿では,多クラス異常検出のための拡散モデルと変圧器を創造的に組み合わせる。
論文 参考訳(メタデータ) (2024-07-02T03:09:40Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
コントラスト学習と2D-Flowを組み合わせた自己教師付き異常検出手法を提案する。
本手法は,主流の教師なし手法と比較して,検出精度が向上し,モデルパラメータが減少し,推論速度が向上することを示す。
BTADデータセットでは,MVTecADデータセットでは画像レベルのAUROCが99.6%,BTADデータセットでは画像レベルのAUROCが96.8%であった。
論文 参考訳(メタデータ) (2023-11-12T10:07:03Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
異常検出は、トレーニング観察と何らかの点で異なるサンプルを認識することである。
最近の最先端のディープラーニングに基づく異常検出手法は、計算コスト、複雑さ、不安定な訓練手順、非自明な実装に悩まされている。
我々は、軽量な畳み込みニューラルネットワークを訓練し、異常検出における最先端の性能に到達するための単純な学習手順を活用する。
論文 参考訳(メタデータ) (2022-07-03T20:11:51Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。