論文の概要: Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning
- arxiv url: http://arxiv.org/abs/2407.01905v1
- Date: Tue, 2 Jul 2024 03:09:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 17:03:34.725238
- Title: Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning
- Title(参考訳): 二重条件付き拡散リファインメントによる複数クラス異常検出の強化
- Authors: Jiawei Zhan, Jinxiang Lai, Bin-Bin Gao, Jun Liu, Xiaochen Chen, Chengjie Wang,
- Abstract要約: 一モデル毎の手法は、しばしば限定的な一般化能力に苦しむ。
近年の1モデルオールカテゴリ方式の特徴再構築手法は, 異常サンプルの再構成やぼやけた再構築といった課題に直面している。
本稿では,多クラス異常検出のための拡散モデルと変圧器を創造的に組み合わせる。
- 参考スコア(独自算出の注目度): 30.4548093767138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection, the technique of identifying abnormal samples using only normal samples, has attracted widespread interest in industry. Existing one-model-per-category methods often struggle with limited generalization capabilities due to their focus on a single category, and can fail when encountering variations in product. Recent feature reconstruction methods, as representatives in one-model-all-categories schemes, face challenges including reconstructing anomalous samples and blurry reconstructions. In this paper, we creatively combine a diffusion model and a transformer for multi-class anomaly detection. This approach leverages diffusion to obtain high-frequency information for refinement, greatly alleviating the blurry reconstruction problem while maintaining the sampling efficiency of the reverse diffusion process. The task is transformed into image inpainting to disconnect the input-output correlation, thereby mitigating the "identical shortcuts" problem and avoiding the model from reconstructing anomalous samples. Besides, we introduce category-awareness using dual conditioning to ensure the accuracy of prediction and reconstruction in the reverse diffusion process, preventing excessive deviation from the target category, thus effectively enabling multi-class anomaly detection. Futhermore, Spatio-temporal fusion is also employed to fuse heatmaps predicted at different timesteps and scales, enhancing the performance of multi-class anomaly detection. Extensive experiments on benchmark datasets demonstrate the superior performance and exceptional multi-class anomaly detection capabilities of our proposed method compared to others.
- Abstract(参考訳): 正常サンプルのみを用いて異常サンプルを同定する手法である異常検出は、業界で広く関心を集めている。
既存の1モデル毎カテゴリの手法は、単一のカテゴリにフォーカスするため、限定的な一般化能力に苦しむことが多く、製品のバリエーションに遭遇しても失敗することがある。
近年の1モデルオールカテゴリ方式の特徴再構築手法は, 異常サンプルの再構成やぼやけた再構築といった課題に直面している。
本稿では,多クラス異常検出のための拡散モデルと変圧器を創造的に組み合わせる。
この手法は拡散を利用して精製のための高周波情報を取得し、逆拡散過程のサンプリング効率を維持しながら、ぼやけた再構成問題を大幅に軽減する。
タスクは画像に変化し、入力と出力の相関関係を切断し、"同一のショートカット"問題を緩和し、モデルが異常なサンプルを再構成しないようにする。
さらに、二重条件付きカテゴリー認識を導入し、逆拡散過程における予測と再構成の精度を確保し、対象カテゴリからの過度なずれを防止し、マルチクラス異常検出を効果的に実現する。
さらに、時空間融合は、異なる時間ステップとスケールで予測されるヒートマップを融合させ、マルチクラスの異常検出の性能を高めるためにも用いられる。
ベンチマークデータセットに対する広範囲な実験により,提案手法の優れた性能と例外的な多クラス異常検出能力が他の手法と比較して実証された。
関連論文リスト
- DualAnoDiff: Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation [40.257604426546216]
製造業における異常検査の性能は異常データの不足によって制約される。
既存の異常発生法は、生成した異常の多様性が限られている。
本稿では,新しい拡散型少数ショット画像生成モデルであるDualAnoDiffを提案する。
論文 参考訳(メタデータ) (2024-08-24T08:09:32Z) - Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
我々は,通常のデータのみにアクセス可能な場合に,複数のクラスに属するオブジェクトから異常を検出する統一モデルを開発した。
まず、生成的アプローチについて検討し、再構成のための潜伏拡散モデルについて検討する。
「拡散モデルの入力特徴空間を修正し、アイデンティティショートカットをさらに緩和する特徴編集戦略を導入する。」
論文 参考訳(メタデータ) (2023-07-16T14:41:22Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
本研究では,GAN(Generative Adversarial Neural Network)のパワーを活用した,現実の応用における異常検出のための逆方向検出手法を提案する。
従来の手法は、あらゆる種類の異常に適用できないような、クラス単位での精度のばらつきに悩まされていた。
RCALADという手法は,この構造に新たな識別器を導入し,より効率的な学習プロセスを実現することで,この問題を解決しようとするものである。
論文 参考訳(メタデータ) (2023-04-16T13:05:39Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。