Just Propagate: Unifying Matrix Factorization, Network Embedding, and LightGCN for Link Prediction
- URL: http://arxiv.org/abs/2410.21325v1
- Date: Sat, 26 Oct 2024 21:43:34 GMT
- Title: Just Propagate: Unifying Matrix Factorization, Network Embedding, and LightGCN for Link Prediction
- Authors: Haoxin Liu,
- Abstract summary: We propose a unified framework for link prediction that covers matrix factorization and representative network embedding and graph neural network methods.
Our results could deepen our understanding and inspire novel designs for link prediction methods.
- Score: 5.1359892878090845
- License:
- Abstract: Link prediction is a fundamental task in graph analysis. Despite the success of various graph-based machine learning models for link prediction, there lacks a general understanding of different models. In this paper, we propose a unified framework for link prediction that covers matrix factorization and representative network embedding and graph neural network methods. Our preliminary methodological and empirical analyses further reveal several key design factors based on our unified framework. We believe our results could deepen our understanding and inspire novel designs for link prediction methods.
Related papers
- Link Prediction with Relational Hypergraphs [28.594243961681684]
Link prediction with knowledge graphs has been thoroughly studied in graph machine learning.
We propose a framework for link prediction with relational hypergraphs, unlocking applications of graph neural networks to fully relational structures.
arXiv Detail & Related papers (2024-02-06T15:05:40Z) - Variational Disentangled Graph Auto-Encoders for Link Prediction [10.390861526194662]
This paper proposes a novel framework with two variants, the disentangled graph auto-encoder (DGAE) and the variational disentangled graph auto-encoder (VDGAE)
The proposed framework infers the latent factors that cause edges in the graph and disentangles the representation into multiple channels corresponding to unique latent factors.
arXiv Detail & Related papers (2023-06-20T06:25:05Z) - A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge
Graphs [6.379544211152605]
Graph neural networks are prominent models for representation learning over graph-structured data.
Our goal is to provide a systematic understanding of the landscape of graph neural networks for knowledge graphs.
arXiv Detail & Related papers (2023-02-04T17:40:03Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis.
This paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP.
Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
arXiv Detail & Related papers (2022-12-31T10:07:19Z) - Pyramidal Predictive Network: A Model for Visual-frame Prediction Based
on Predictive Coding Theory [1.4610038284393165]
We propose a novel neural network model for the task of visual-frame prediction.
The model is composed of a series of recurrent and convolutional units forming the top-down and bottom-up streams.
It learns to predict future frames in a visual sequence, with ConvLSTMs on each layer in the network making local prediction from top to down.
arXiv Detail & Related papers (2022-08-15T06:28:34Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem.
Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph.
We give an in-depth theoretical analysis of three specific embedding learning methods based on introduced kernel matrix.
arXiv Detail & Related papers (2022-07-04T04:09:50Z) - Online Multi-Agent Forecasting with Interpretable Collaborative Graph
Neural Network [65.11999700562869]
We propose a novel collaborative prediction unit (CoPU), which aggregates predictions from multiple collaborative predictors according to a collaborative graph.
Our methods outperform state-of-the-art works on the three tasks by 28.6%, 17.4% and 21.0% on average.
arXiv Detail & Related papers (2021-07-02T08:20:06Z) - Benchmarking Graph Neural Networks on Link Prediction [80.2049358846658]
We benchmark several existing graph neural network (GNN) models on different datasets for link predictions.
Our experiments show these GNN architectures perform similarly on various benchmarks for link prediction tasks.
arXiv Detail & Related papers (2021-02-24T20:57:16Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.