論文の概要: Heterogeneous Interaction Modeling With Reduced Accumulated Error for Multi-Agent Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2410.21342v1
- Date: Mon, 28 Oct 2024 04:53:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:39:46.505738
- Title: Heterogeneous Interaction Modeling With Reduced Accumulated Error for Multi-Agent Trajectory Prediction
- Title(参考訳): 多エージェント軌道予測のための累積誤差低減による不均一相互作用モデリング
- Authors: Siyuan Chen, Jiahai Wang,
- Abstract要約: 本稿では, トラジェクトリ予測のために, 累積誤差を低減した異種相互作用モデリングを提案する。
本手法は, エージェント間の動的相互作用グラフを推定する。
不均質な注意機構は、異質な隣人からターゲットエージェントへの影響を集約する相互作用グラフ上で定義される。
- 参考スコア(独自算出の注目度): 25.723504433042923
- License:
- Abstract: Dynamical complex systems composed of interactive heterogeneous agents are prevalent in the world, including urban traffic systems and social networks. Modeling the interactions among agents is the key to understanding and predicting the dynamics of the complex system, e.g., predicting the trajectories of traffic participants in the city. Compared with interaction modeling in homogeneous systems such as pedestrians in a crowded scene, heterogeneous interaction modeling is less explored. Worse still, the error accumulation problem becomes more severe since the interactions are more complex. To tackle the two problems, this paper proposes heterogeneous interaction modeling with reduced accumulated error for multi-agent trajectory prediction. Based on the historical trajectories, our method infers the dynamic interaction graphs among agents, featured by directed interacting relations and interacting effects. A heterogeneous attention mechanism is defined on the interaction graphs for aggregating the influence from heterogeneous neighbors to the target agent. To alleviate the error accumulation problem, this paper analyzes the error sources from the spatial and temporal perspectives, and proposes to introduce the graph entropy and the mixup training strategy for reducing the two types of errors respectively. Our method is examined on three real-world datasets containing heterogeneous agents, and the experimental results validate the superiority of our method.
- Abstract(参考訳): インタラクティブな異種エージェントからなる動的複合システムは、都市交通システムやソーシャルネットワークなど、世界に広く普及している。
エージェント間の相互作用をモデル化することは、複雑なシステムのダイナミクスを理解し予測する鍵であり、例えば、市内の交通参加者の軌跡を予測する。
混み合ったシーンにおける歩行者などの均質なシステムにおける相互作用モデリングと比較して、異質な相互作用モデリングは研究されていない。
さらに悪いことに、相互作用がより複雑であるため、エラー蓄積問題はより深刻になる。
この2つの問題に対処するために,マルチエージェント軌道予測のための累積誤差を低減した異種相互作用モデリングを提案する。
本手法は, エージェント間の動的相互作用グラフを推定し, 直接的相互作用関係と相互作用効果を特徴とする。
不均質な注意機構は、異質な隣人からターゲットエージェントへの影響を集約する相互作用グラフ上で定義される。
本稿では, 誤差蓄積問題を軽減するために, 空間的および時間的視点から誤差源を解析し, グラフエントロピーと混合学習戦略を導入することを提案する。
異種エージェントを含む実世界の3つのデータセットについて検討し,本手法の優位性を検証した。
関連論文リスト
- Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
ニューラル・インタラクション・エナジー(MATE)によるマルチエージェント軌道予測(Multi-Agent Trajectory Prediction)というフレームワークを導入する。
MATEは神経相互作用エネルギーを用いてエージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
論文 参考訳(メタデータ) (2024-04-25T12:47:47Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
実世界のマルチエージェントシステムは、しばしば動的で連続的であり、エージェントは時間とともにその軌道や相互作用を共進化させ、変化させる。
本稿では,グラフニューラルネットワーク(GNN)をODE関数として,エージェント間の連続的な相互作用をキャプチャする新しいモデルを提案する。
我々のモデルの主な革新は、治療の時間依存表現を学習し、ODE関数にそれらを組み込むことで、潜在的な結果の正確な予測を可能にすることである。
論文 参考訳(メタデータ) (2024-02-29T23:07:07Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
本稿では,従来の手法と比較して2つの特徴を持つ関係推論の確率的手法を提案する。
提案手法を複数のベンチマークデータセットで評価し,既存の手法よりも精度良く対話型を推定できることを実証した。
全体として、提案モデルはデータ効率が高く、より小さなシステムで訓練された場合、大規模システムに対して一般化可能である。
論文 参考訳(メタデータ) (2023-04-30T19:45:04Z) - InterGen: Diffusion-based Multi-human Motion Generation under Complex Interactions [49.097973114627344]
動作拡散プロセスに人間と人間の相互作用を組み込んだ効果的な拡散ベースアプローチであるInterGenを提案する。
我々はまず、InterHumanという名前のマルチモーダルデータセットをコントリビュートする。これは、様々な2人インタラクションのための約107Mフレームで構成され、正確な骨格運動と23,337の自然言語記述を持つ。
本稿では,世界規模での2人のパフォーマーのグローバルな関係を明示的に定式化した対話拡散モデルにおける動作入力の表現を提案する。
論文 参考訳(メタデータ) (2023-04-12T08:12:29Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
エージェントの経路のノイズ観測から直接相互作用力のデータに基づく近似を構築することの問題点を考察する。
学習された相互作用カーネルは、長い時間間隔でエージェントの振る舞いを予測するために使用される。
さらに,カーネル評価コストを削減し,マルチエージェントシステムのシミュレーションコストを大幅に削減する。
論文 参考訳(メタデータ) (2022-12-11T20:09:36Z) - Learning Heterogeneous Interaction Strengths by Trajectory Prediction
with Graph Neural Network [0.0]
地中相互作用強度を考慮せずに連続的に重み付けされた相互作用グラフを推定するための注意関係推論ネットワーク(RAIN)を提案する。
本研究では, シミュレーションされた物理系の連続的な相互作用強度を, 教師なしの方法で正確に推定できることを述べる。
論文 参考訳(メタデータ) (2022-08-28T09:13:33Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
本稿では,エージェントの軌道に沿った状態や速度の観測を前提として,相互作用カーネルが依存する変数と相互作用カーネル自体を両立させる学習手法を提案する。
これにより、高次元観測データから次元性の呪いを避ける効果的な次元削減が得られる。
我々は,本手法の学習能力を,様々な一階対話システムに示す。
論文 参考訳(メタデータ) (2022-08-04T16:31:01Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
マルチプライカテゴリにおける異種エージェントの軌跡を予測できる,シンプルで効果的な非境界相互作用ネットワーク (UNIN) を提案する。
具体的には、提案した無制限近傍相互作用モジュールは、相互作用に関与するすべてのエージェントの融合特徴を同時に生成する。
階層型グラフアテンションモジュールを提案し,カテゴリ間相互作用とエージェント間相互作用を求める。
論文 参考訳(メタデータ) (2021-07-31T13:36:04Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。