論文の概要: Neural Interaction Energy for Multi-Agent Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2404.16579v1
- Date: Thu, 25 Apr 2024 12:47:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:40:12.232552
- Title: Neural Interaction Energy for Multi-Agent Trajectory Prediction
- Title(参考訳): マルチエージェント軌道予測のための神経相互作用エネルギー
- Authors: Kaixin Shen, Ruijie Quan, Linchao Zhu, Jun Xiao, Yi Yang,
- Abstract要約: ニューラル・インタラクション・エナジー(MATE)によるマルチエージェント軌道予測(Multi-Agent Trajectory Prediction)というフレームワークを導入する。
MATEは神経相互作用エネルギーを用いてエージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
- 参考スコア(独自算出の注目度): 55.098754835213995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maintaining temporal stability is crucial in multi-agent trajectory prediction. Insufficient regularization to uphold this stability often results in fluctuations in kinematic states, leading to inconsistent predictions and the amplification of errors. In this study, we introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE). This framework assesses the interactive motion of agents by employing neural interaction energy, which captures the dynamics of interactions and illustrates their influence on the future trajectories of agents. To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint. These constraints work together to ensure temporal stability at both the system and agent levels, effectively mitigating prediction fluctuations inherent in multi-agent systems. Comparative evaluations against previous methods on four diverse datasets highlight the superior prediction accuracy and generalization capabilities of our model.
- Abstract(参考訳): 時間的安定性を維持することは、マルチエージェント軌道予測において重要である。
この安定性を維持するのに十分でない正規化は、しばしば運動状態の変動をもたらし、矛盾した予測と誤りの増幅をもたらす。
本研究では,ニューラル・インタラクション・エナジー(MATE)を用いたマルチエージェント軌道予測というフレームワークを提案する。
この枠組みは、相互作用のダイナミクスを捉え、エージェントの将来の軌跡に影響を及ぼす神経相互作用エネルギーを用いて、エージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
これらの制約は、システムレベルとエージェントレベルの時間的安定性を確保するために協力し、マルチエージェントシステムに固有の予測変動を効果的に緩和する。
4つの多様なデータセットに対する従来の手法との比較評価では,モデルの予測精度と一般化能力に優れていた。
関連論文リスト
- MDMP: Multi-modal Diffusion for supervised Motion Predictions with uncertainty [7.402769693163035]
本稿では,運動予測のための多モード拡散モデルを提案する。
骨格データと行動のテキスト記述を統合し、定量性のある不確実性を伴う洗練された長期動作予測を生成する。
我々のモデルは、長期動作を正確に予測する上で、既存の生成技術よりも一貫して優れている。
論文 参考訳(メタデータ) (2024-10-04T18:49:00Z) - Multi-Agent Trajectory Prediction with Difficulty-Guided Feature Enhancement Network [1.5888246742280365]
軌道予測は、交通参加者の将来の動きを予測することを目的として、自動運転に不可欠である。
伝統的な方法は通常、エージェントの軌道に関する全体論的推論を行い、エージェント間の難易度の違いを無視する。
本稿では,エージェント間の予測難易度差を利用した,DGFNet(DifficultyGuided Feature Enhancement)を提案する。
論文 参考訳(メタデータ) (2024-07-26T07:04:30Z) - Disentangled Neural Relational Inference for Interpretable Motion
Prediction [38.40799770648501]
グラフベース表現と時系列モデルを統合した変分自動エンコーダフレームワークを開発した。
本モデルでは,対話を特徴付ける解釈可能なエッジ特徴を付加した動的相互作用グラフを推論する。
シミュレーションと実世界の両方のデータセットに関する広範な実験を通じて、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2024-01-07T22:49:24Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
アクティブ推論フレームワーク(英: active inference framework、AIF)は、現代の神経科学を基盤とした、有望な新しい計算フレームワークである。
本研究では,ヒトの視覚行動指導において,AIFが期待する役割を捉える能力をテストする。
本稿では,多次元世界状態から自由エネルギーの一次元分布にマッピングする先行関数の新たな定式化について述べる。
論文 参考訳(メタデータ) (2022-11-16T20:00:38Z) - Leveraging Smooth Attention Prior for Multi-Agent Trajectory Prediction [32.970169015894705]
我々は,時間的全変動に基づくマルチエージェントインタラクションの注意モデルを構築した。
我々は,その利点を,合成運転データと自然運転データの両方に対する最先端のアプローチと比較することにより,予測精度の面で示す。
論文 参考訳(メタデータ) (2022-03-08T21:54:28Z) - Dyadic Human Motion Prediction [119.3376964777803]
本稿では,2つの被験者の相互作用を明示的に推論する動き予測フレームワークを提案する。
具体的には,2つの被験者の運動履歴の相互依存をモデル化する一対の注意機構を導入する。
これにより、より現実的な方法で長期の運動力学を保ち、異常かつ高速な運動を予測することができる。
論文 参考訳(メタデータ) (2021-12-01T10:30:40Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
本稿では,ハイブリットアテンション機構に基づく動的キー情報の選択とランク付けを行う汎用的な動き予測フレームワークを提案する。
このフレームワークは、マルチエージェント軌道予測と人間の動き予測タスクを処理するためにインスタンス化される。
我々は,異なる領域における合成シミュレーションと運動予測ベンチマークの両方について,その枠組みを検証した。
論文 参考訳(メタデータ) (2021-08-03T06:30:30Z) - Unlimited Neighborhood Interaction for Heterogeneous Trajectory
Prediction [97.40338982628094]
マルチプライカテゴリにおける異種エージェントの軌跡を予測できる,シンプルで効果的な非境界相互作用ネットワーク (UNIN) を提案する。
具体的には、提案した無制限近傍相互作用モジュールは、相互作用に関与するすべてのエージェントの融合特徴を同時に生成する。
階層型グラフアテンションモジュールを提案し,カテゴリ間相互作用とエージェント間相互作用を求める。
論文 参考訳(メタデータ) (2021-07-31T13:36:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。