Combining Incomplete Observational and Randomized Data for Heterogeneous Treatment Effects
- URL: http://arxiv.org/abs/2410.21343v1
- Date: Mon, 28 Oct 2024 06:19:14 GMT
- Title: Combining Incomplete Observational and Randomized Data for Heterogeneous Treatment Effects
- Authors: Dong Yao, Caizhi Tang, Qing Cui, Longfei Li,
- Abstract summary: Existing methods for integrating observational data with randomized data must require textitcomplete observational data.
We propose a resilient approach to textbfCombine textbfIncomplete textbfObservational data and randomized data for HTE estimation.
- Score: 10.9134216137537
- License:
- Abstract: Data from observational studies (OSs) is widely available and readily obtainable yet frequently contains confounding biases. On the other hand, data derived from randomized controlled trials (RCTs) helps to reduce these biases; however, it is expensive to gather, resulting in a tiny size of randomized data. For this reason, effectively fusing observational data and randomized data to better estimate heterogeneous treatment effects (HTEs) has gained increasing attention. However, existing methods for integrating observational data with randomized data must require \textit{complete} observational data, meaning that both treated subjects and untreated subjects must be included in OSs. This prerequisite confines the applicability of such methods to very specific situations, given that including all subjects, whether treated or untreated, in observational studies is not consistently achievable. In our paper, we propose a resilient approach to \textbf{C}ombine \textbf{I}ncomplete \textbf{O}bservational data and randomized data for HTE estimation, which we abbreviate as \textbf{CIO}. The CIO is capable of estimating HTEs efficiently regardless of the completeness of the observational data, be it full or partial. Concretely, a confounding bias function is first derived using the pseudo-experimental group from OSs, in conjunction with the pseudo-control group from RCTs, via an effect estimation procedure. This function is subsequently utilized as a corrective residual to rectify the observed outcomes of observational data during the HTE estimation by combining the available observational data and the all randomized data. To validate our approach, we have conducted experiments on a synthetic dataset and two semi-synthetic datasets.
Related papers
- Estimating Heterogeneous Treatment Effects by Combining Weak Instruments and Observational Data [44.31792000298105]
Accurately predicting conditional average treatment effects (CATEs) is crucial in personalized medicine and digital platform analytics.
We develop a novel approach to combine IV and observational data to enable reliable CATE estimation.
arXiv Detail & Related papers (2024-06-10T16:40:55Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
Causal effects in populations are often estimated using observational datasets.
We propose a meta-algorithm that attempts to reject observational estimates that are biased.
arXiv Detail & Related papers (2022-09-27T21:47:23Z) - Combining Observational and Randomized Data for Estimating Heterogeneous
Treatment Effects [82.20189909620899]
Estimating heterogeneous treatment effects is an important problem across many domains.
Currently, most existing works rely exclusively on observational data.
We propose to estimate heterogeneous treatment effects by combining large amounts of observational data and small amounts of randomized data.
arXiv Detail & Related papers (2022-02-25T18:59:54Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
This work uses relational inference to fill in the incomplete data.
We propose Omni-Relational Network (OR-Net) to model the pointwise relativity in two aspects.
arXiv Detail & Related papers (2021-05-02T06:05:54Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
We propose a general algorithm to estimate causal effects from emphmultiple data sources.
We show theoretically that this reduces the variance of the ATE estimate.
We apply this framework to inference from observational data under an outcome selection bias.
arXiv Detail & Related papers (2021-03-30T21:20:51Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z) - How and Why to Use Experimental Data to Evaluate Methods for
Observational Causal Inference [7.551130027327462]
We describe and analyze observational sampling from randomized controlled trials (OSRCT)
This method can be used to create constructed observational data sets with corresponding unbiased estimates of treatment effect.
We then perform a large-scale evaluation of seven causal inference methods over 37 data sets.
arXiv Detail & Related papers (2020-10-06T21:44:01Z) - Causal Inference With Selectively Deconfounded Data [22.624714904663424]
We consider the benefit of incorporating a large confounded observational dataset (confounder unobserved) alongside a small deconfounded observational dataset (confounder revealed) when estimating the Average Treatment Effect (ATE)
Our theoretical results suggest that the inclusion of confounded data can significantly reduce the quantity of deconfounded data required to estimate the ATE to within a desired accuracy level.
arXiv Detail & Related papers (2020-02-25T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.