Estimating Heterogeneous Treatment Effects by Combining Weak Instruments and Observational Data
- URL: http://arxiv.org/abs/2406.06452v2
- Date: Fri, 01 Nov 2024 21:26:09 GMT
- Title: Estimating Heterogeneous Treatment Effects by Combining Weak Instruments and Observational Data
- Authors: Miruna Oprescu, Nathan Kallus,
- Abstract summary: Accurately predicting conditional average treatment effects (CATEs) is crucial in personalized medicine and digital platform analytics.
We develop a novel approach to combine IV and observational data to enable reliable CATE estimation.
- Score: 44.31792000298105
- License:
- Abstract: Accurately predicting conditional average treatment effects (CATEs) is crucial in personalized medicine and digital platform analytics. Since the treatments of interest often cannot be directly randomized, observational data is leveraged to learn CATEs, but this approach can incur significant bias from unobserved confounding. One strategy to overcome these limitations is to leverage instrumental variables (IVs) as latent quasi-experiments, such as randomized intent-to-treat assignments or randomized product recommendations. This approach, on the other hand, can suffer from low compliance, $\textit{i.e.}$, IV weakness. Some subgroups may even exhibit zero compliance, meaning we cannot instrument for their CATEs at all. In this paper, we develop a novel approach to combine IV and observational data to enable reliable CATE estimation in the presence of unobserved confounding in the observational data and low compliance in the IV data, including no compliance for some subgroups. We propose a two-stage framework that first learns $\textit{biased}$ CATEs from the observational data, and then applies a compliance-weighted correction using IV data, effectively leveraging IV strength variability across covariates. We characterize the convergence rates of our method and validate its effectiveness through a simulation study. Additionally, we demonstrate its utility with real data by analyzing the heterogeneous effects of 401(k) plan participation on wealth.
Related papers
- Combining Incomplete Observational and Randomized Data for Heterogeneous Treatment Effects [10.9134216137537]
Existing methods for integrating observational data with randomized data must require textitcomplete observational data.
We propose a resilient approach to textbfCombine textbfIncomplete textbfObservational data and randomized data for HTE estimation.
arXiv Detail & Related papers (2024-10-28T06:19:14Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
Causal effects in populations are often estimated using observational datasets.
We propose a meta-algorithm that attempts to reject observational estimates that are biased.
arXiv Detail & Related papers (2022-09-27T21:47:23Z) - Discovering Ancestral Instrumental Variables for Causal Inference from
Observational Data [0.0]
Instrumental variable (IV) is a powerful approach to inferring the causal effect of a treatment on an outcome of interest from observational data.
Existing IV methods require that an IV is selected and justified with domain knowledge.
In this paper, we study and design a data-driven algorithm to discover valid IVs from data under mild assumptions.
arXiv Detail & Related papers (2022-06-04T07:48:13Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - Ancestral Instrument Method for Causal Inference without Complete
Knowledge [0.0]
Unobserved confounding is the main obstacle to causal effect estimation from observational data.
Conditional IVs have been proposed to relax the requirement of standard IVs by conditioning on a set of observed variables.
We develop an algorithm for unbiased causal effect estimation with a given ancestral IV and observational data.
arXiv Detail & Related papers (2022-01-11T07:02:16Z) - Improving Inference from Simple Instruments through Compliance
Estimation [0.0]
Instrumental variables (IV) regression is widely used to estimate causal treatment effects in settings where receipt of treatment is not fully random.
While IV can recover consistent treatment effect estimates, they are often noisy.
We study how to improve the efficiency of IV estimates by exploiting the predictable variation in the strength of the instrument.
arXiv Detail & Related papers (2021-08-08T20:18:34Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
We propose a general algorithm to estimate causal effects from emphmultiple data sources.
We show theoretically that this reduces the variance of the ATE estimate.
We apply this framework to inference from observational data under an outcome selection bias.
arXiv Detail & Related papers (2021-03-30T21:20:51Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.