Exploring reinforcement learning for incident response in autonomous military vehicles
- URL: http://arxiv.org/abs/2410.21407v1
- Date: Mon, 28 Oct 2024 18:08:23 GMT
- Title: Exploring reinforcement learning for incident response in autonomous military vehicles
- Authors: Henrik Madsen, Gudmund Grov, Federico Mancini, Magnus Baksaas, Åvald Åslaugson Sommervoll,
- Abstract summary: Research on this topic points to autonomous cyber defence as one of the capabilities that may be needed to accelerate the adoption of these vehicles for military purposes.
Here, we explore reinforcement learning to train an agent that can autonomously respond to cyber attacks on unmanned vehicles in the context of a military operation.
A key contribution of our work is demonstrating that reinforcement learning is a viable approach to train an agent that can be used for autonomous cyber defence on a real unmanned ground vehicle, even when trained in a simple simulation environment.
- Score: 0.62914438169038
- License:
- Abstract: Unmanned vehicles able to conduct advanced operations without human intervention are being developed at a fast pace for many purposes. Not surprisingly, they are also expected to significantly change how military operations can be conducted. To leverage the potential of this new technology in a physically and logically contested environment, security risks are to be assessed and managed accordingly. Research on this topic points to autonomous cyber defence as one of the capabilities that may be needed to accelerate the adoption of these vehicles for military purposes. Here, we pursue this line of investigation by exploring reinforcement learning to train an agent that can autonomously respond to cyber attacks on unmanned vehicles in the context of a military operation. We first developed a simple simulation environment to quickly prototype and test some proof-of-concept agents for an initial evaluation. This agent was then applied to a more realistic simulation environment and finally deployed on an actual unmanned ground vehicle for even more realism. A key contribution of our work is demonstrating that reinforcement learning is a viable approach to train an agent that can be used for autonomous cyber defence on a real unmanned ground vehicle, even when trained in a simple simulation environment.
Related papers
- Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Scalable Decentralized Cooperative Platoon using Multi-Agent Deep
Reinforcement Learning [2.5499055723658097]
This paper introduces a vehicle platooning approach designed to enhance traffic flow and safety.
It is developed using deep reinforcement learning in the Unity 3D game engine.
The proposed platooning model focuses on scalability, decentralization, and fostering positive cooperation.
arXiv Detail & Related papers (2023-12-11T22:04:38Z) - Autonomous Driving with Deep Reinforcement Learning in CARLA Simulation [0.0]
We use Deep Q-Learning to learn a policy by which an autonomous car may maintain its lane at top speed while avoiding other vehicles.
After that, we used CARLA simulation environment to test and verify our newly acquired policy.
arXiv Detail & Related papers (2023-06-20T00:54:20Z) - Exiting the Simulation: The Road to Robust and Resilient Autonomous
Vehicles at Scale [0.0]
This paper presents the current state-of-the-art simulation frameworks and methodologies used in the development of autonomous driving systems.
A synthesis of the key challenges surrounding autonomous driving simulation is presented.
arXiv Detail & Related papers (2022-10-19T20:32:43Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Attacks and Faults Injection in Self-Driving Agents on the Carla
Simulator -- Experience Report [1.933681537640272]
We report on the injection of adversarial attacks and software faults in a self-driving agent running in a driving simulator.
We show that adversarial attacks and faults injected in the trained agent can lead to erroneous decisions and severely jeopardize safety.
arXiv Detail & Related papers (2022-02-25T21:46:12Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Safe Reinforcement Learning via Curriculum Induction [94.67835258431202]
In safety-critical applications, autonomous agents may need to learn in an environment where mistakes can be very costly.
Existing safe reinforcement learning methods make an agent rely on priors that let it avoid dangerous situations.
This paper presents an alternative approach inspired by human teaching, where an agent learns under the supervision of an automatic instructor.
arXiv Detail & Related papers (2020-06-22T10:48:17Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
We present a maneuver planning module able to negotiate the entering in busy roundabouts.
The proposed module is based on a neural network trained to predict when and how entering the roundabout throughout the whole duration of the maneuver.
arXiv Detail & Related papers (2020-01-03T11:16:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.