Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis
- URL: http://arxiv.org/abs/2003.11842v1
- Date: Thu, 26 Mar 2020 11:33:52 GMT
- Title: Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis
- Authors: James Houston, Frank G. Glavin, Michael G. Madden
- Abstract summary: A novel application of a locally-connected neural network (NN) for the binary classification of spectroscopy data is proposed.
A two-step classification process is presented as an alternative to the binary and one-class classification paradigms.
- Score: 0.5801044612920815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new approach to classification of high dimensional
spectroscopy data and demonstrates that it outperforms other current
state-of-the art approaches. The specific task we consider is identifying
whether samples contain chlorinated solvents or not, based on their Raman
spectra. We also examine robustness to classification of outlier samples that
are not represented in the training set (negative outliers). A novel
application of a locally-connected neural network (NN) for the binary
classification of spectroscopy data is proposed and demonstrated to yield
improved accuracy over traditionally popular algorithms. Additionally, we
present the ability to further increase the accuracy of the locally-connected
NN algorithm through the use of synthetic training spectra and we investigate
the use of autoencoder based one-class classifiers and outlier detectors.
Finally, a two-step classification process is presented as an alternative to
the binary and one-class classification paradigms. This process combines the
locally-connected NN classifier, the use of synthetic training data, and an
autoencoder based outlier detector to produce a model which is shown to both
produce high classification accuracy, and be robust to the presence of negative
outliers.
Related papers
- Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
We propose a Hierarchical Dynamic Labeling (HDL) algorithm that does not depend on model predictions and utilizes image embeddings to generate sample labels.
Our approach has the potential to change the paradigm of pseudo-label generation in semi-supervised learning.
arXiv Detail & Related papers (2024-04-26T06:00:27Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
We propose a new network called DiffSpectralNet, which combines diffusion and transformer techniques.
First, we use an unsupervised learning framework based on the diffusion model to extract both high-level and low-level spectral-spatial features.
The diffusion method is capable of extracting diverse and meaningful spectral-spatial features, leading to improvement in HSI classification.
arXiv Detail & Related papers (2023-10-29T15:26:37Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Generative Adversarial Classification Network with Application to
Network Traffic Classification [25.93711502488151]
We propose a joint data imputation and data classification method, termed generative adversarial classification network (GACN)
For the scenario where some data samples are unlabeled, we propose an extension termed semi-supervised GACN (SSGACN), which is able to use the partially labeled data to improve classification accuracy.
We conduct experiments with real-world network traffic data traces, which demonstrate that GACN and SS-GACN can more accurately impute data features that are more important for classification, and they outperform existing methods in terms of classification accuracy.
arXiv Detail & Related papers (2023-03-19T15:00:47Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Robust Neural Network Classification via Double Regularization [2.41710192205034]
We propose a novel double regularization of the neural network training loss that combines a penalty on the complexity of the classification model and an optimal reweighting of training observations.
We demonstrate DRFit, for neural net classification of (i) MNIST and (ii) CIFAR-10, in both cases with simulated mislabeling.
arXiv Detail & Related papers (2021-12-15T13:19:20Z) - A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification [2.4727719996518487]
This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks.
For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals.
In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support.
arXiv Detail & Related papers (2021-07-30T06:18:05Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.