論文の概要: Empirical curvelet based Fully Convolutional Network for supervised texture image segmentation
- arxiv url: http://arxiv.org/abs/2410.21562v1
- Date: Mon, 28 Oct 2024 21:49:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:44.272740
- Title: Empirical curvelet based Fully Convolutional Network for supervised texture image segmentation
- Title(参考訳): 教師付きテクスチャ画像セグメンテーションのための経験的曲線に基づく完全畳み込みネットワーク
- Authors: Yuan Huang, Fugen Zhou, Jerome Gilles,
- Abstract要約: 教師付きテクスチャ分類/セグメンテーションを行うための新しい手法を提案する。
提案されているアイデアは、特定のテクスチャ記述子で完全な畳み込みネットワークを提供することである。
提案手法は,複数のデータセットを用いて評価し,その結果を各種最先端アルゴリズムと比較する。
- 参考スコア(独自算出の注目度): 2.780132626494265
- License:
- Abstract: In this paper, we propose a new approach to perform supervised texture classification/segmentation. The proposed idea is to feed a Fully Convolutional Network with specific texture descriptors. These texture features are extracted from images by using an empirical curvelet transform. We propose a method to build a unique empirical curvelet filter bank adapted to a given dictionary of textures. We then show that the output of these filters can be used to build efficient texture descriptors utilized to finally feed deep learning networks. Our approach is finally evaluated on several datasets and compare the results to various state-of-the-art algorithms and show that the proposed method dramatically outperform all existing ones.
- Abstract(参考訳): 本稿では,教師付きテクスチャ分類/セグメンテーションを行うための新しい手法を提案する。
提案されているアイデアは、特定のテクスチャ記述子で完全な畳み込みネットワークを提供することである。
これらのテクスチャ特徴は、経験的曲線変換を用いて画像から抽出される。
本稿では,テクスチャの辞書に適応した独自の経験的曲線フィルタバンクを構築する方法を提案する。
次に、これらのフィルタの出力を用いて、ディープラーニングネットワークを最終的に供給するために使用される効率的なテクスチャ記述子を構築することができることを示す。
提案手法は最終的にいくつかのデータセットで評価され、その結果を様々な最先端アルゴリズムと比較し、提案手法が既存のアルゴリズムを劇的に上回っていることを示す。
関連論文リスト
- Multiscale texture separation [0.0]
本稿では,メイヤーのイメージマンガとテクスチャ分解モデルの挙動を理論的に検討する。
分解モデルとよく選択されたリトルウッド・ペイリーフィルタを組み合わせることで、ほぼ完全にある種のテクスチャを抽出することができる。
論文 参考訳(メタデータ) (2024-11-01T00:33:36Z) - Infinite Texture: Text-guided High Resolution Diffusion Texture Synthesis [61.189479577198846]
Infinite Textureはテキストプロンプトから任意の大きさのテクスチャ画像を生成する方法である。
本手法は,1つのテクスチャ上に拡散モデルを微調整し,その分布をモデルの出力領域に埋め込むことを学習する。
1つのGPU上で任意の解像度の出力テクスチャ画像を生成するためのスコアアグリゲーションストラテジーによって、我々の微調整拡散モデルが生成される。
論文 参考訳(メタデータ) (2024-05-13T21:53:09Z) - GenesisTex: Adapting Image Denoising Diffusion to Texture Space [15.907134430301133]
GenesisTexはテキスト記述から3次元幾何学のテクスチャを合成する新しい手法である。
我々は,各視点に対して潜在テクスチャマップを保持し,対応する視点の描画に予測ノイズを伴って更新する。
大域的整合性は、ノイズ予測ネットワーク内のスタイル整合性機構の統合によって達成される。
論文 参考訳(メタデータ) (2024-03-26T15:15:15Z) - PairingNet: A Learning-based Pair-searching and -matching Network for
Image Fragments [6.694162736590122]
本稿では,難解な修復問題を解決するために,学習に基づくイメージフラグメントのペア探索とマッチング手法を提案する。
提案するネットワークは,ペア探索の精度に優れ,マッチングエラーを低減し,計算時間を大幅に短縮する。
論文 参考訳(メタデータ) (2023-12-14T07:43:53Z) - Pyramid Texture Filtering [86.15126028139736]
目立った構造を保ちながらテクスチャをスムーズにするための,シンプルだが効果的な手法を提案する。
ガウスピラミッドの粗いレベルは、しばしば自然にテクスチャを排除し、主要な画像構造を要約する。
本手法は, 異なるスケール, 局所的なコントラスト, 形状のテクスチャから構造を分離する上で, 構造劣化や視覚的アーティファクトの導入を伴わずに有効であることを示す。
論文 参考訳(メタデータ) (2023-05-11T02:05:30Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - Multiscale Analysis for Improving Texture Classification [62.226224120400026]
本稿では,テクスチャの異なる空間周波数帯域を別々に扱うために,ガウス・ラプラシアピラミッドを用いる。
バイオインスパイアされたテクスチャ記述子,情報理論測度,灰色レベルの共起行列特徴,ハリリック統計特徴から抽出した特徴を特徴ベクトルに集約した。
論文 参考訳(メタデータ) (2022-04-21T01:32:22Z) - Convolutional Neural Networks from Image Markers [62.997667081978825]
特徴 画像マーカーからの学習(FLIM)は、ごく少数の画像でユーザーが描画したストロークから、バックプロパゲーションのない畳み込みフィルタを推定するために最近提案されました。
本稿では、フルコネクテッド層に対してFLIMを拡張し、異なる画像分類問題について実証する。
その結果、FLIMベースの畳み込みニューラルネットワークは、バックプロパゲーションによってゼロから訓練された同じアーキテクチャを上回ります。
論文 参考訳(メタデータ) (2020-12-15T22:58:23Z) - Texture image classification based on a pseudo-parabolic diffusion model [0.0]
提案手法は、確立されたベンチマークテクスチャデータベースの分類と、植物種認識の実践的な課題について検証する。
画像の同種領域内では、擬似放物的演算子が、うる限りノイズの多い詳細を滑らかにすることができることで、優れた性能を大いに正当化することができる。
論文 参考訳(メタデータ) (2020-11-14T00:04:07Z) - Contour Integration using Graph-Cut and Non-Classical Receptive Field [4.935491924643742]
本稿では,他のアルゴリズムのエッジセグメントから画像の輪郭を検出する新しい手法を提案する。
提案したエネルギー関数は、テクスチャノイズを抑制するのに役立つ一次視覚野の周囲変調にインスパイアされている。
論文 参考訳(メタデータ) (2020-10-27T19:07:13Z) - Image Matching across Wide Baselines: From Paper to Practice [80.9424750998559]
局所的な特徴とロバストな推定アルゴリズムの包括的なベンチマークを導入する。
パイプラインのモジュール構造は、さまざまなメソッドの容易な統合、構成、組み合わせを可能にします。
適切な設定で、古典的な解決策は依然として芸術の知覚された状態を上回る可能性があることを示す。
論文 参考訳(メタデータ) (2020-03-03T15:20:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。