A Tutorial on Clinical Speech AI Development: From Data Collection to Model Validation
- URL: http://arxiv.org/abs/2410.21640v1
- Date: Tue, 29 Oct 2024 00:58:15 GMT
- Title: A Tutorial on Clinical Speech AI Development: From Data Collection to Model Validation
- Authors: Si-Ioi Ng, Lingfeng Xu, Ingo Siegert, Nicholas Cummins, Nina R. Benway, Julie Liss, Visar Berisha,
- Abstract summary: This tutorial paper provides an overview of the key components required for robust development of clinical speech AI.
The goal is to provide comprehensive guidance on building models whose inputs and outputs link to the more interpretable and clinically meaningful aspects of speech.
- Score: 19.367198670893778
- License:
- Abstract: There has been a surge of interest in leveraging speech as a marker of health for a wide spectrum of conditions. The underlying premise is that any neurological, mental, or physical deficits that impact speech production can be objectively assessed via automated analysis of speech. Recent advances in speech-based Artificial Intelligence (AI) models for diagnosing and tracking mental health, cognitive, and motor disorders often use supervised learning, similar to mainstream speech technologies like recognition and verification. However, clinical speech AI has distinct challenges, including the need for specific elicitation tasks, small available datasets, diverse speech representations, and uncertain diagnostic labels. As a result, application of the standard supervised learning paradigm may lead to models that perform well in controlled settings but fail to generalize in real-world clinical deployments. With translation into real-world clinical scenarios in mind, this tutorial paper provides an overview of the key components required for robust development of clinical speech AI. Specifically, this paper will cover the design of speech elicitation tasks and protocols most appropriate for different clinical conditions, collection of data and verification of hardware, development and validation of speech representations designed to measure clinical constructs of interest, development of reliable and robust clinical prediction models, and ethical and participant considerations for clinical speech AI. The goal is to provide comprehensive guidance on building models whose inputs and outputs link to the more interpretable and clinically meaningful aspects of speech, that can be interrogated and clinically validated on clinical datasets, and that adhere to ethical, privacy, and security considerations by design.
Related papers
- Named Clinical Entity Recognition Benchmark [2.9332007863461893]
This report introduces a Named Clinical Entity Recognition Benchmark.
It addresses the crucial natural language processing (NLP) task of extracting structured information from clinical narratives.
The leaderboard provides a standardized platform for assessing diverse language models.
arXiv Detail & Related papers (2024-10-07T14:00:18Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process.
We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions.
The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care.
arXiv Detail & Related papers (2024-05-28T16:43:41Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
The early identification of symptoms of memory disorders plays a significant role in ensuring the well-being of populations.
The lack of standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken language.
The work presents an approach related to feature selection, allowing for the automatic selection of the essential features required for diagnosis from the Geneva minimalistic acoustic parameter set and relative speech pauses.
arXiv Detail & Related papers (2024-02-02T17:06:03Z) - An Introduction to Natural Language Processing Techniques and Framework
for Clinical Implementation in Radiation Oncology [1.2714439146420664]
We present state-of-the-art NLP applications that employ large language models (LLMs) in radiation oncology research.
LLMs are prone to many errors such as hallucinations, biases, and ethical violations, which necessitate rigorous evaluation and validation.
Our article aims to provide guidance and insights for researchers and clinicians who are interested in developing and using NLP models in clinical radiation oncology.
arXiv Detail & Related papers (2023-11-03T19:32:35Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
We consider audio-visual modelling in a clinical setting, providing a solution to learn medical representations without human expert annotation.
A simple yet effective multi-modal self-supervised learning framework is proposed for this purpose.
The proposed approach is able to localise anatomical regions of interest during ultrasound imaging, with only speech audio as a reference.
arXiv Detail & Related papers (2023-10-25T08:55:48Z) - ClinicalGPT: Large Language Models Finetuned with Diverse Medical Data
and Comprehensive Evaluation [5.690250818139763]
Large language models have exhibited exceptional performance on various Natural Language Processing (NLP) tasks.
Despite these advances, their effectiveness in medical applications is limited, due to challenges such as factual inaccuracies, reasoning abilities, and lack grounding in real-world experience.
We present ClinicalGPT, a language model explicitly designed and optimized for clinical scenarios.
arXiv Detail & Related papers (2023-06-16T16:56:32Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
We introduce CAPR, a rule-based self-supervision objective for training Transformer language models for domain-specific passage matching.
We apply our objective in four Transformer-based architectures: Contextual Document Vectors, Bi-, Poly- and Cross-encoders.
We report that CAPR outperforms strong baselines in the retrieval of domain-specific passages and effectively generalizes across rule-based and human-labeled passages.
arXiv Detail & Related papers (2021-08-02T10:42:52Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.