DOFS: A Real-world 3D Deformable Object Dataset with Full Spatial Information for Dynamics Model Learning
- URL: http://arxiv.org/abs/2410.21758v1
- Date: Tue, 29 Oct 2024 05:46:16 GMT
- Title: DOFS: A Real-world 3D Deformable Object Dataset with Full Spatial Information for Dynamics Model Learning
- Authors: Zhen Zhang, Xiangyu Chu, Yunxi Tang, K. W. Samuel Au,
- Abstract summary: This work proposes DOFS, a pilot dataset of 3D deformable objects (DOs) (e.g., elasto-plastic objects) with full spatial information.
The dataset consists of active manipulation action, multi-view RGB-D images, well-registered point clouds, 3D deformed mesh, and 3D occupancy with semantics.
In addition, we trained a neural network with the down-sampled 3D occupancy and action as input to model the dynamics of an elasto-plastic object.
- Score: 7.513355021861478
- License:
- Abstract: This work proposes DOFS, a pilot dataset of 3D deformable objects (DOs) (e.g., elasto-plastic objects) with full spatial information (i.e., top, side, and bottom information) using a novel and low-cost data collection platform with a transparent operating plane. The dataset consists of active manipulation action, multi-view RGB-D images, well-registered point clouds, 3D deformed mesh, and 3D occupancy with semantics, using a pinching strategy with a two-parallel-finger gripper. In addition, we trained a neural network with the down-sampled 3D occupancy and action as input to model the dynamics of an elasto-plastic object. Our dataset and all CADs of the data collection system will be released soon on our website.
Related papers
- PokeFlex: A Real-World Dataset of Deformable Objects for Robotics [17.533143584534155]
PokeFlex is a dataset featuring real-world paired and annotated multimodal data that includes 3D textured meshes, point clouds, RGB images, and depth maps.
Such data can be leveraged for several downstream tasks such as online 3D mesh reconstruction.
We demonstrate a use case for the PokeFlex dataset in online 3D mesh reconstruction.
arXiv Detail & Related papers (2024-10-10T07:54:17Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synth automatically generates 3D training data for point cloud registration.
We replace the point cloud registration network with a much smaller surrogate network, leading to a $4056.43$ speedup.
Our results on TUD-L, LINEMOD and Occluded-LINEMOD evidence that a neural network trained on our searched dataset yields consistently better performance than the same one trained on the widely used ModelNet40 dataset.
arXiv Detail & Related papers (2023-09-20T09:29:44Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - UniG3D: A Unified 3D Object Generation Dataset [75.49544172927749]
UniG3D is a unified 3D object generation dataset constructed by employing a universal data transformation pipeline on ShapeNet datasets.
This pipeline converts each raw 3D model into comprehensive multi-modal data representation.
The selection of data sources for our dataset is based on their scale and quality.
arXiv Detail & Related papers (2023-06-19T07:03:45Z) - Spatially Invariant Unsupervised 3D Object Segmentation with Graph
Neural Networks [23.729853358582506]
We propose a framework, SPAIR3D, to model a point cloud as a spatial mixture model.
We jointly learn the multiple-object representation and segmentation in 3D via Variational Autoencoders (VAE)
Experimental results demonstrate that SPAIR3D is capable of detecting and segmenting variable number of objects without appearance information.
arXiv Detail & Related papers (2021-06-10T09:20:16Z) - Interactive Annotation of 3D Object Geometry using 2D Scribbles [84.51514043814066]
In this paper, we propose an interactive framework for annotating 3D object geometry from point cloud data and RGB imagery.
Our framework targets naive users without artistic or graphics expertise.
arXiv Detail & Related papers (2020-08-24T21:51:29Z) - Hindsight for Foresight: Unsupervised Structured Dynamics Models from
Physical Interaction [24.72947291987545]
Key challenge for an agent learning to interact with the world is to reason about physical properties of objects.
We propose a novel approach for modeling the dynamics of a robot's interactions directly from unlabeled 3D point clouds and images.
arXiv Detail & Related papers (2020-08-02T11:04:49Z) - Info3D: Representation Learning on 3D Objects using Mutual Information
Maximization and Contrastive Learning [8.448611728105513]
We propose to extend the InfoMax and contrastive learning principles on 3D shapes.
We show that we can maximize the mutual information between 3D objects and their "chunks" to improve the representations in aligned datasets.
arXiv Detail & Related papers (2020-06-04T00:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.