論文の概要: Guided Diffusion-based Counterfactual Augmentation for Robust Session-based Recommendation
- arxiv url: http://arxiv.org/abs/2410.21892v1
- Date: Tue, 29 Oct 2024 09:36:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 11:30:31.901800
- Title: Guided Diffusion-based Counterfactual Augmentation for Robust Session-based Recommendation
- Title(参考訳): ロバストセッションに基づく勧告のための誘導拡散に基づく対効果増強
- Authors: Muskan Gupta, Priyanka Gupta, Lovekesh Vig,
- Abstract要約: セッションベースのレコメンデーション(SR)モデルは、現在のセッション中のユーザの振る舞いに基づいて、トップKアイテムをユーザに推奨することを目的としている。
文献ではいくつかのSRモデルが提案されているが、トレーニングデータの固有のバイアスに対する感受性に関する懸念が提起されている。
本稿では,SRのための拡散に基づく反ファクト拡張フレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.890250056463914
- License:
- Abstract: Session-based recommendation (SR) models aim to recommend top-K items to a user, based on the user's behaviour during the current session. Several SR models are proposed in the literature, however,concerns have been raised about their susceptibility to inherent biases in the training data (observed data) such as popularity bias. SR models when trained on the biased training data may encounter performance challenges on out-of-distribution data in real-world scenarios. One way to mitigate popularity bias is counterfactual data augmentation. Compared to prior works that rely on generating data using SR models, we focus on utilizing the capabilities of state-of-the art diffusion models for generating counterfactual data. We propose a guided diffusion-based counterfactual augmentation framework for SR. Through a combination of offline and online experiments on a real-world and simulated dataset, respectively, we show that our approach performs significantly better than the baseline SR models and other state-of-the art augmentation frameworks. More importantly, our framework shows significant improvement on less popular target items, by achieving up to 20% gain in Recall and 13% gain in CTR on real-world and simulated datasets,respectively.
- Abstract(参考訳): セッションベースのレコメンデーション(SR)モデルは、現在のセッション中のユーザの振る舞いに基づいて、トップKアイテムをユーザに推奨することを目的としている。
文献ではいくつかのSRモデルが提案されているが、人気バイアスのようなトレーニングデータ(観測データ)の固有バイアスに対する感受性についての議論が提起されている。
バイアスのあるトレーニングデータに基づいてトレーニングされたSRモデルは、現実世界のシナリオにおける配布外データのパフォーマンス上の課題に遭遇する可能性がある。
人気バイアスを軽減する方法の1つは、デファクトデータの増大だ。
SRモデルを用いたデータ生成に係わる先行研究と比較して, 対実データ生成における最先端の拡散モデルの活用に重点を置いている。
本稿では,SRのための拡散に基づく反ファクト拡張フレームワークを提案する。
実世界のデータセットとシミュレーションデータセットのオフライン実験とオンライン実験を組み合わせることで、我々のアプローチはベースラインSRモデルや他の最先端の拡張フレームワークよりもはるかに優れた性能を示すことを示す。
さらに重要なことは、我々のフレームワークは、リコールで最大20%、実世界のデータセットとシミュレーションデータセットで最大13%のCTRを達成することで、あまり人気のないターゲットアイテムに対して大幅に改善されていることです。
関連論文リスト
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
論文 参考訳(メタデータ) (2024-10-31T14:52:01Z) - Pruning then Reweighting: Towards Data-Efficient Training of Diffusion Models [33.09663675904689]
データセットプルーニングの観点から,効率的な拡散訓練について検討する。
GAN(Generative Adversarial Network)のような生成モデルに対するデータ効率トレーニングの原則に着想を得て、まず、GANで使用されるデータ選択スキームをDMトレーニングに拡張する。
生成性能をさらに向上するため,クラスワイド・リウェイト方式を採用する。
論文 参考訳(メタデータ) (2024-09-27T20:21:19Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
本稿では,未ラベルデータを用いたRMトレーニングを強化する手法であるSemi-Supervised Reward Modeling (SSRM)を提案する。
SSRMは、追加のラベリングコストを発生させることなく、報酬モデルを大幅に改善することを示した。
全体として、SSRMは、人間が注釈付けした大量のデータへの依存を大幅に減らし、効果的な報酬モデルのトレーニングに要する全体的なコストと時間を削減する。
論文 参考訳(メタデータ) (2024-09-10T22:57:58Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Improving Conversational Recommendation Systems via Bias Analysis and
Language-Model-Enhanced Data Augmentation [28.349599213528627]
会話レコメンデーションシステム(CRS)は,言語モデリング技術の進歩とともに注目されている研究分野である。
本研究では、CRSモデル開発のためのベンチマークデータセットを探索し、マルチターン相互作用に固有のフィードバックループから生じる潜在的なバイアスに対処する。
バイアスを緩和しながらモデル性能を向上させるための2つの新しい戦略「Once-Aug」と「PopNudge」を提案する。
論文 参考訳(メタデータ) (2023-10-25T16:11:55Z) - Augmentation-induced Consistency Regularization for Classification [25.388324221293203]
我々はCR-Augと呼ばれるデータ拡張に基づく一貫性の規則化フレームワークを提案する。
CR-Augは、データ拡張によって生成された異なるサブモデルの出力分布を互いに整合するように強制する。
画像と音声の分類タスクにCR-Augを実装し、その有効性を検証するために広範な実験を行う。
論文 参考訳(メタデータ) (2022-05-25T03:15:36Z) - Fine-tuning of Pre-trained End-to-end Speech Recognition with Generative
Adversarial Networks [10.723935272906461]
近年, GAN (Generative Adversarial Network) を用いたエンド・ツー・エンド(E2E) ASRシステムの対戦訓練について検討している。
GAN目標を用いた事前学習型ASRモデルの微調整のための新しいフレームワークを提案する。
提案手法は,ベースラインと従来のGANベースの対戦モデルより優れている。
論文 参考訳(メタデータ) (2021-03-10T17:40:48Z) - Exposing Shallow Heuristics of Relation Extraction Models with Challenge
Data [49.378860065474875]
我々は、TACREDで訓練されたSOTA関係抽出(RE)モデルの故障モードを同定する。
トレーニングの例として、いくつかの課題データを追加することで、モデルのパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-10-07T21:17:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。