論文の概要: Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model
- arxiv url: http://arxiv.org/abs/2410.23994v2
- Date: Fri, 01 Nov 2024 07:55:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 14:34:02.636024
- Title: Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model
- Title(参考訳): Breaking Determinism:離散状態空間拡散モデルを用いた逐次勧告のファジィモデリング
- Authors: Wenjia Xie, Hao Wang, Luankang Zhang, Rui Zhou, Defu Lian, Enhong Chen,
- Abstract要約: シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
- 参考スコア(独自算出の注目度): 66.91323540178739
- License:
- Abstract: Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior sequences. We revisit SR from a novel information-theoretic perspective and find that conventional sequential modeling methods fail to adequately capture the randomness and unpredictability of user behavior. Inspired by fuzzy information processing theory, this paper introduces the DDSR model, which uses fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests. Formally based on diffusion transition processes in discrete state spaces, which is unlike common diffusion models such as DDPM that operate in continuous domains. It is better suited for discrete data, using structured transitions instead of arbitrary noise introduction to avoid information loss. Additionally, to address the inefficiency of matrix transformations due to the vast discrete space, we use semantic labels derived from quantization or RQ-VAE to replace item IDs, enhancing efficiency and improving cold start issues. Testing on three public benchmark datasets shows that DDSR outperforms existing state-of-the-art methods in various settings, demonstrating its potential and effectiveness in handling SR tasks.
- Abstract(参考訳): シークエンシャルレコメンデーション(SR)は、ユーザが過去の行動シーケンスに基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、従来の逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に捉えていないことを発見した。
本稿では,ファジィ情報処理理論に着想を得たDDSRモデルを提案する。
形式的には離散状態空間における拡散遷移過程に基づいており、連続領域で作用するDDPMのような一般的な拡散モデルとは異なっている。
情報損失を避けるため、任意のノイズ導入の代わりに構造化トランジションを使用することにより、離散データに適している。
さらに, 離散空間による行列変換の非効率性に対処するために, 量子化やRQ-VAEから派生したセマンティックラベルを用いて項目IDを置換し, 効率を向上し, コールドスタート問題を改善する。
3つの公開ベンチマークデータセットをテストすると、DDSRは既存の最先端メソッドをさまざまな設定で上回り、SRタスクを扱う可能性と有効性を示している。
関連論文リスト
- Generative Diffusion Models for Sequential Recommendations [7.948486055890262]
変分オートエンコーダ(VAE)やGAN(Generative Adversarial Networks)のような生成モデルは、逐次レコメンデーションタスクにおいて有望であることを示している。
本研究では、ロバスト性を改善するためにDiffuRecアーキテクチャの拡張を導入し、関連するユーザとイテムのインタラクションをよりよく捉えるために、Approximatorにクロスアテンション機構を組み込んだ。
論文 参考訳(メタデータ) (2024-10-25T09:39:05Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
拡散に基づく逐次レコメンデーションモデルにSchr"odinger Bridgeを導入し、SdifRecモデルを作成する。
また、ユーザクラスタリング情報を誘導条件として利用するcon-SdifRecと呼ばれるSdifRecの拡張版も提案する。
論文 参考訳(メタデータ) (2024-08-30T09:10:38Z) - Classification of High-dimensional Time Series in Spectral Domain using Explainable Features [8.656881800897661]
本稿では,高次元定常時系列を分類するためのモデルに基づくアプローチを提案する。
我々のアプローチはモデルパラメータの解釈可能性を強調し、神経科学のような分野に特に適している。
我々の手法の新規性は、モデルパラメータの解釈可能性にあり、神経科学における重要なニーズに対処する。
論文 参考訳(メタデータ) (2024-08-15T19:10:12Z) - Aligning Diffusion Behaviors with Q-functions for Efficient Continuous Control [25.219524290912048]
オフライン強化学習を2段階最適化問題として定式化する。
まず、報酬のない行動データセットに関する表現的生成ポリシーを事前訓練し、次にこれらのポリシーを微調整して、Q値のようなタスク固有のアノテーションと整合させる。
この戦略により、多種多様な行動データを活用し、一般化を強化し、最小限のアノテーションを使って下流タスクへの迅速な適応を可能にする。
論文 参考訳(メタデータ) (2024-07-12T06:32:36Z) - Diffusion Augmentation for Sequential Recommendation [47.43402785097255]
本稿では,より高品質な生成のためのDiffuASR(Diffusion Augmentation for Sequential Recommendation)を提案する。
DiffuASRによる強化データセットは、複雑なトレーニング手順なしで、シーケンシャルレコメンデーションモデルを直接トレーニングするために使用することができる。
3つの逐次レコメンデーションモデルを用いた3つの実世界のデータセットに関する広範な実験を行った。
論文 参考訳(メタデータ) (2023-09-22T13:31:34Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - iSAGE: An Incremental Version of SAGE for Online Explanation on Data
Streams [8.49072000414555]
iSAGEは、SAGEの時間およびメモリ効率のインクリメンタル化である。
iSAGE は SAGE と同様の理論的性質を持つことを示す。
論文 参考訳(メタデータ) (2023-03-02T11:51:54Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Modeling Sequences as Distributions with Uncertainty for Sequential
Recommendation [63.77513071533095]
既存のシーケンシャルメソッドの多くは、ユーザが決定論的であると仮定する。
項目-項目遷移は、いくつかの項目において著しく変動し、ユーザの興味のランダム性を示す。
本稿では,不確実性を逐次モデルに注入する分散型トランスフォーマーシークエンシャルレコメンデーション(DT4SR)を提案する。
論文 参考訳(メタデータ) (2021-06-11T04:35:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。