論文の概要: DAHiTrA: Damage Assessment Using a Novel Hierarchical Transformer
Architecture
- arxiv url: http://arxiv.org/abs/2208.02205v1
- Date: Wed, 3 Aug 2022 16:41:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-04 13:52:53.314057
- Title: DAHiTrA: Damage Assessment Using a Novel Hierarchical Transformer
Architecture
- Title(参考訳): dahitra: 新しい階層型変圧器アーキテクチャによる損傷評価
- Authors: Navjot Kaur, Cheng-Chun Lee, Ali Mostafavi, Ali Mahdavi-Amiri
- Abstract要約: 本稿では,衛星画像に基づいて建物損傷を分類する階層変換器を用いた新しいディープラーニングモデルDAHiTrAを提案する。
衛星画像はリアルタイムで高被覆情報を提供する。
ディープラーニング手法は、建物の損傷を分類する上で有望であることが示されている。
- 参考スコア(独自算出の注目度): 4.162725423624233
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents DAHiTrA, a novel deep-learning model with hierarchical
transformers to classify building damages based on satellite images in the
aftermath of hurricanes. An automated building damage assessment provides
critical information for decision making and resource allocation for rapid
emergency response. Satellite imagery provides real-time, high-coverage
information and offers opportunities to inform large-scale post-disaster
building damage assessment. In addition, deep-learning methods have shown to be
promising in classifying building damage. In this work, a novel
transformer-based network is proposed for assessing building damage. This
network leverages hierarchical spatial features of multiple resolutions and
captures temporal difference in the feature domain after applying a transformer
encoder on the spatial features. The proposed network achieves
state-of-the-art-performance when tested on a large-scale disaster damage
dataset (xBD) for building localization and damage classification, as well as
on LEVIR-CD dataset for change detection tasks. In addition, we introduce a new
high-resolution satellite imagery dataset, Ida-BD (related to the 2021
Hurricane Ida in Louisiana in 2021, for domain adaptation to further evaluate
the capability of the model to be applied to newly damaged areas with scarce
data. The domain adaptation results indicate that the proposed model can be
adapted to a new event with only limited fine-tuning. Hence, the proposed model
advances the current state of the art through better performance and domain
adaptation. Also, Ida-BD provides a higher-resolution annotated dataset for
future studies in this field.
- Abstract(参考訳): 本稿では,ハリケーン後の衛星画像に基づいて建物被害を分類する階層型トランスフォーマーを用いた新しいディープラーニングモデルDAHiTrAを提案する。
自動建物損傷評価は、迅速な緊急対応のために意思決定と資源割当に重要な情報を提供する。
衛星画像は、リアルタイムで高いカバレッジ情報を提供し、災害後の大規模建物被害評価を通知する機会を提供する。
さらに,建物損傷の分類において,ディープラーニング手法が有望であることが示されている。
本研究では,建物損傷評価のためのトランスフォーマーネットワークを提案する。
このネットワークは、複数の解像度の階層的空間特徴を活用し、空間特徴にトランスフォーマーエンコーダを適用した後、特徴領域の時間差をキャプチャする。
提案するネットワークは,大規模災害被害データセット (xbd) で建物位置推定と被害分類を行う場合や,変更検出タスクにrevir-cdデータセットを使用する場合の最先端性能を実現する。
また,新しい高解像度衛星画像データセットida-bd(ルイジアナ州で2021年に発生したハリケーンidaに関連している)を導入し,新たに被害が生じた地域で適用可能なモデルの性能をさらに評価した。
ドメイン適応結果は,提案モデルが微調整に制限のある新しいイベントに適応できることを示唆している。
したがって、提案モデルでは、パフォーマンスの向上とドメイン適応により、現在の技術状況が向上する。
また、Ida-BDはこの分野で将来の研究のために高解像度のアノテートデータセットを提供する。
関連論文リスト
- Multi-step feature fusion for natural disaster damage assessment on satellite images [0.0]
複数のネットワークレベルで機能融合を行う新しい畳み込みニューラルネットワーク(CNN)モジュールを導入する。
イメージペアの分析にCNNモデルを適用するために、追加のネットワーク要素であるFuse Moduleが提案された。
視覚変換器モデルの精度は3ポイント以上向上した。
論文 参考訳(メタデータ) (2024-10-29T09:47:32Z) - One-class Damage Detector Using Deeper Fully-Convolutional Data
Descriptions for Civil Application [0.0]
モデルパラメータを最適化するために、通常の画像を使用することができる点において、一級損傷検出アプローチには利点がある。
本稿では,FCDDをベースラインモデルとして再現した一級損傷検出の汎用アプリケーションを提案する。
論文 参考訳(メタデータ) (2023-03-03T06:27:15Z) - Classification of structural building damage grades from multi-temporal
photogrammetric point clouds using a machine learning model trained on
virtual laser scanning data [58.720142291102135]
実世界の点雲からの多層建築物の損傷を自動的に評価する新しい手法を提案する。
我々は、仮想レーザースキャン(VLS)データに基づいて訓練された機械学習モデルを使用する。
このモデルでは、高いマルチターゲット分類精度(全精度:92.0% - 95.1%)が得られる。
論文 参考訳(メタデータ) (2023-02-24T12:04:46Z) - Multi-view deep learning for reliable post-disaster damage
classification [0.0]
本研究は,人工知能(AI)と多視点画像を用いた,より信頼性の高い建築損傷分類を実現することを目的とする。
提案モデルでは, ハリケーン・ハーヴェイに続き, 調査対象の建物について, 専門家ラベル付きジオタグ付き画像を含む偵察視覚データセットを訓練し, 検証した。
論文 参考訳(メタデータ) (2022-08-06T01:04:13Z) - Interpretability in Convolutional Neural Networks for Building Damage
Classification in Satellite Imagery [0.0]
我々は、プレサスタ衛星画像とポストサスタ衛星画像とをラベル付けしたデータセットを使用して、建物ごとの損傷を評価する。
複数の畳み込みニューラルネットワーク(CNN)をトレーニングし、建物ごとの損傷を評価する。
我々の研究は、人為的気候変動による人道的危機の進行に、計算的に貢献することを目指している。
論文 参考訳(メタデータ) (2022-01-24T16:55:56Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Assessing out-of-domain generalization for robust building damage
detection [78.6363825307044]
建築損傷検出は、衛星画像にコンピュータビジョン技術を適用することで自動化することができる。
モデルは、トレーニングで利用可能な災害画像と、新しいイベントの画像の間の分散の変化に対して堅牢でなければならない。
今後はOOD体制に重点を置くべきだと我々は主張する。
論文 参考訳(メタデータ) (2020-11-20T10:30:43Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。