論文の概要: Differentiable Inductive Logic Programming for Fraud Detection
- arxiv url: http://arxiv.org/abs/2410.21928v1
- Date: Tue, 29 Oct 2024 10:43:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:41:20.634966
- Title: Differentiable Inductive Logic Programming for Fraud Detection
- Title(参考訳): フラッド検出のための微分帰納論理プログラミング
- Authors: Boris Wolfson, Erman Acar,
- Abstract要約: 本研究では、Fraud Detectionに対するAIアプローチとして、DILP(diffariable Inductive Logic Programming)の適用性について検討する。
処理においては、Decision Treesのようなより伝統的なメソッドや、Deep Symbolic Classificationのような最近のメソッドには大きなアドバンテージを提供していないが、それでも同等の結果が得られている。
私たちは、その制限と改善すべきポイントと、従来の方法よりもずっと便利なユースケースを示します。
- 参考スコア(独自算出の注目度): 3.0846824529023382
- License:
- Abstract: Current trends in Machine Learning prefer explainability even when it comes at the cost of performance. Therefore, explainable AI methods are particularly important in the field of Fraud Detection. This work investigates the applicability of Differentiable Inductive Logic Programming (DILP) as an explainable AI approach to Fraud Detection. Although the scalability of DILP is a well-known issue, we show that with some data curation such as cleaning and adjusting the tabular and numerical data to the expected format of background facts statements, it becomes much more applicable. While in processing it does not provide any significant advantage on rather more traditional methods such as Decision Trees, or more recent ones like Deep Symbolic Classification, it still gives comparable results. We showcase its limitations and points to improve, as well as potential use cases where it can be much more useful compared to traditional methods, such as recursive rule learning.
- Abstract(参考訳): 機械学習の現在のトレンドは、パフォーマンスのコストに関しても説明可能性を好む。
したがって、フルート検出の分野では、説明可能なAI手法が特に重要である。
本研究では、Fraud Detectionに対するAIアプローチとして、DILP(diffariable Inductive Logic Programming)の適用性について検討する。
DILPのスケーラビリティはよく知られた問題であるが、表や数値データを背景事実文の予測形式に整理・調整するといったデータキュレーションによって、より適用可能であることを示す。
処理においては、Decision Treesのようなより伝統的なメソッドや、Deep Symbolic Classificationのような最近のメソッドには大きなアドバンテージを提供していないが、それでも同等の結果が得られている。
また、再帰的なルール学習のような従来の手法に比べてはるかに有用である可能性のあるユースケースについても紹介する。
関連論文リスト
- Learning Rules Explaining Interactive Theorem Proving Tactic Prediction [5.229806149125529]
この問題を帰納論理プログラミング(ILP)タスクとして表現する。
ILP表現を使用することで、追加で計算コストの高いプロパティをエンコードすることで、機能空間を豊かにしました。
我々は、このリッチな特徴空間を用いて、与えられた証明状態に戦術がいつ適用されたかを説明する規則を学ぶ。
論文 参考訳(メタデータ) (2024-11-02T09:18:33Z) - Differentiable Logic Programming for Distant Supervision [4.820391833117535]
我々はニューラル・シンボリックAI(NeSy)におけるニューラルネットワークと論理プログラミングを統合する新しい手法を提案する。
従来の手法とは違って,提案手法はラベルの欠落を推論するシンボリック・ソルバに依存しない。
この方法は、遠隔の監督下でより効率的な学習を容易にする。
論文 参考訳(メタデータ) (2024-08-22T17:55:52Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
大規模言語モデル(LLM)と決定木推論(OCTree)に基づく新しいフレームワークを提案する。
私たちのキーとなるアイデアは、LLMの推論機能を活用して、手動で検索スペースを指定せずに優れた特徴生成ルールを見つけることです。
実験の結果、この単純なフレームワークは様々な予測モデルの性能を一貫して向上させることが示された。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
容易に解釈可能な用語でエラーを特徴付けることは、分類器が体系的なエラーを起こす傾向にあるかどうかを洞察する。
正しい予測と誤予測を区別するトークンのパターンを発見することを提案する。
提案手法であるPremiseが実際によく動作することを示す。
論文 参考訳(メタデータ) (2023-11-18T00:24:26Z) - Rethinking Negative Pairs in Code Search [56.23857828689406]
我々は、重み項をInfoNCEに挿入する簡易で効果的なSoft-InfoNCE損失を提案する。
我々は,Soft-InfoNCEが学習したコード表現の分布を制御することと,より正確な相互情報推定の導出に与える影響を分析する。
論文 参考訳(メタデータ) (2023-10-12T06:32:42Z) - Interpretable Anomaly Detection via Discrete Optimization [1.7150329136228712]
本稿では,シーケンシャルデータから本質的に解釈可能な異常検出を学習するためのフレームワークを提案する。
この問題は計算的に困難であることを示し,制約最適化に基づく2つの学習アルゴリズムを開発した。
プロトタイプ実装を用いて,提案手法は精度とF1スコアの点で有望な結果を示す。
論文 参考訳(メタデータ) (2023-03-24T16:19:15Z) - Machine Learning with Probabilistic Law Discovery: A Concise
Introduction [77.34726150561087]
Probabilistic Law Discovery (PLD) は、確率論的ルール学習の変種を実装した論理ベースの機械学習手法である。
PLDはDecision Tree/Random Forestメソッドに近いが、関連するルールの定義方法に大きく異なる。
本稿はPLDの主な原則を概説し、その利点と限界を強調し、いくつかのアプリケーションガイドラインを提供する。
論文 参考訳(メタデータ) (2022-12-22T17:40:13Z) - Refining neural network predictions using background knowledge [68.35246878394702]
学習システムにおける論理的背景知識を用いて,ラベル付きトレーニングデータの不足を補うことができることを示す。
そこで本研究では,修正された予測を元の予測に近い精度で検出する微分可能精細関数を提案する。
このアルゴリズムは、複雑なSATの公式に対して、非常に少ない繰り返しで最適に洗練され、勾配降下ができない解がしばしば見つかる。
論文 参考訳(メタデータ) (2022-06-10T10:17:59Z) - Overcoming the curse of dimensionality with Laplacian regularization in
semi-supervised learning [80.20302993614594]
ラプラシア正規化の欠点を克服するための統計的解析を提供する。
望ましい振る舞いを示すスペクトルフィルタリング法を多数発表する。
我々は,本手法を大量のデータで利用できるようにするために,現実的な計算ガイドラインを提供する。
論文 参考訳(メタデータ) (2020-09-09T14:28:54Z) - Explainable AI for Classification using Probabilistic Logic Inference [9.656846523452502]
説明可能な分類法を提案する。
本手法は,まず学習データから記号的知識ベースを構築し,その知識ベース上で線形プログラミングによる確率的推論を行う。
これは、ある分類を説明として責任を負う決定的な特徴を特定し、アートリー値ベースの手法であるSHAPに類似した結果を生成する。
論文 参考訳(メタデータ) (2020-05-05T11:39:23Z) - SMT + ILP [12.47276164048813]
我々は、満足度モジュロ理論技術を活用して、帰納的宣言型プログラミングを再考する。
本稿では、満足度変調理論技術を活用して、帰納的宣言型プログラミングを再考する。
論文 参考訳(メタデータ) (2020-01-15T10:09:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。