論文の概要: A Smooth Transition Between Induction and Deduction: Fast Abductive Learning Based on Probabilistic Symbol Perception
- arxiv url: http://arxiv.org/abs/2502.12919v1
- Date: Tue, 18 Feb 2025 14:59:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:17.767027
- Title: A Smooth Transition Between Induction and Deduction: Fast Abductive Learning Based on Probabilistic Symbol Perception
- Title(参考訳): 誘導と推論の間の滑らかな遷移:確率的シンボル知覚に基づく高速帰納学習
- Authors: Lin-Han Jia, Si-Yu Han, Lan-Zhe Guo, Zhi Zhou, Zhao-Long Li, Yu-Feng Li, Zhi-Hua Zhou,
- Abstract要約: 確率的シンボル知覚(PSP)と呼ばれる最適化アルゴリズムを導入し,誘導と推論のスムーズな遷移を実現する。
実験は有望な結果を実証する。
- 参考スコア(独自算出の注目度): 81.30687085692576
- License:
- Abstract: Abductive learning (ABL) that integrates strengths of machine learning and logical reasoning to improve the learning generalization, has been recently shown effective. However, its efficiency is affected by the transition between numerical induction and symbolical deduction, leading to high computational costs in the worst-case scenario. Efforts on this issue remain to be limited. In this paper, we identified three reasons why previous optimization algorithms for ABL were not effective: insufficient utilization of prediction, symbol relationships, and accumulated experience in successful abductive processes, resulting in redundant calculations to the knowledge base. To address these challenges, we introduce an optimization algorithm named as Probabilistic Symbol Perception (PSP), which makes a smooth transition between induction and deduction and keeps the correctness of ABL unchanged. We leverage probability as a bridge and present an efficient data structure, achieving the transfer from a continuous probability sequence to discrete Boolean sequences with low computational complexity. Experiments demonstrate the promising results.
- Abstract(参考訳): 学習一般化を改善するために機械学習の強みと論理的推論を統合した帰納的学習(ABL)が近年,有効であることが示されている。
しかし、その効率は数値誘導と記号推論の遷移に影響され、最悪のシナリオでは計算コストが高くなる。
この問題への取り組みは依然として限られている。
本稿では,従来のABL最適化アルゴリズムが有効でない理由として,予測の不十分な利用,シンボル関係,帰納的プロセスにおける累積的経験の蓄積,知識ベースへの冗長な計算,の3つを挙げる。
これらの課題に対処するため,確率的シンボル認識 (PSP) と呼ばれる最適化アルゴリズムを導入し,誘導と推論のスムーズな遷移を図り,ABLの正しさを一定に保つ。
我々は,確率を橋梁として利用し,計算複雑性の低い離散ブール列への連続確率列の転送を達成し,効率的なデータ構造を示す。
実験は有望な結果を実証する。
関連論文リスト
- Gradient Descent Efficiency Index [0.0]
本研究では,各イテレーションの有効性を定量化するために,新しい効率指標Ekを導入する。
提案した測定基準は、誤差の相対的変化と繰り返し間の損失関数の安定性の両方を考慮に入れている。
Ekは、機械学習アプリケーションにおける最適化アルゴリズムの選択とチューニングにおいて、より詳細な決定を導く可能性がある。
論文 参考訳(メタデータ) (2024-10-25T10:22:22Z) - Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
本稿では,量子化と早期出口動的ネットワークを組み合わせたより一般的な動的ネットワークQuEEを提案する。
我々のアルゴリズムは、ソフトアーリーエグジットや入力依存圧縮の一形態と見なすことができる。
提案手法の重要な要素は、さらなる計算によって実現可能な潜在的な精度向上の正確な予測である。
論文 参考訳(メタデータ) (2024-06-20T15:25:13Z) - BOLD: Boolean Logic Deep Learning [1.4272256806865107]
本稿では、ブール重みと入力からなるニューロンを、降下勾配や実算術の代わりにブール論理を用いてブール領域で効率的に訓練できるようなブール変動の概念を導入する。
提案手法は,ImageNet分類におけるベースライン完全精度を実現し,セマンティックセグメンテーションの最先端結果を上回った。
トレーニングと推論の双方において、エネルギー消費を著しく減少させる。
論文 参考訳(メタデータ) (2024-05-25T19:50:23Z) - Efficiently Factorizing Boolean Matrices using Proximal Gradient Descent [31.00422943397691]
BMFを連続的に緩和する新しい弾性二元正則化器を提案する。
本研究では,本手法が実世界の合成・実世界のデータに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-07-14T20:22:21Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - A Learning-Based Optimal Uncertainty Quantification Method and Its
Application to Ballistic Impact Problems [1.713291434132985]
本稿では、入力(または事前)測度が部分的に不完全であるシステムに対する最適(最大および無限)不確実性境界について述べる。
本研究では,不確実性最適化問題に対する学習基盤の枠組みを実証する。
本手法は,工学的実践における性能証明と安全性のためのマップ構築に有効であることを示す。
論文 参考訳(メタデータ) (2022-12-28T14:30:53Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - Investigating the Scalability and Biological Plausibility of the
Activation Relaxation Algorithm [62.997667081978825]
アクティベーション・リラクシエーション(AR)アルゴリズムは、誤りアルゴリズムのバックプロパゲーションを近似するためのシンプルでロバストなアプローチを提供する。
このアルゴリズムは、学習可能な後方重みセットを導入することにより、さらに単純化され、生物学的に検証可能であることを示す。
また、元のARアルゴリズム(凍結フィードフォワードパス)の別の生物学的に信じられない仮定が、パフォーマンスを損なうことなく緩和できるかどうかについても検討する。
論文 参考訳(メタデータ) (2020-10-13T08:02:38Z) - A Simple but Tough-to-Beat Data Augmentation Approach for Natural
Language Understanding and Generation [53.8171136907856]
カットオフと呼ばれる、シンプルで効果的なデータ拡張戦略のセットを紹介します。
カットオフはサンプリング一貫性に依存しているため、計算オーバーヘッドが少なくなる。
cutoffは、敵のトレーニングを一貫して上回り、IWSLT2014 German- English データセットで最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-09-29T07:08:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。