CT to PET Translation: A Large-scale Dataset and Domain-Knowledge-Guided Diffusion Approach
- URL: http://arxiv.org/abs/2410.21932v1
- Date: Tue, 29 Oct 2024 10:48:52 GMT
- Title: CT to PET Translation: A Large-scale Dataset and Domain-Knowledge-Guided Diffusion Approach
- Authors: Dac Thai Nguyen, Trung Thanh Nguyen, Huu Tien Nguyen, Thanh Trung Nguyen, Huy Hieu Pham, Thanh Hung Nguyen, Thao Nguyen Truong, Phi Le Nguyen,
- Abstract summary: Positron Emission Tomography (PET) and Computed Tomography (CT) are essential for diagnosing, staging, and monitoring various diseases, particularly cancer.
Despite their importance, the use of PET/CT systems is limited by the necessity for radioactive materials, the scarcity of PET scanners, and the high cost associated with PET imaging.
In response to these challenges, our study addresses the issue of generating PET images from CT images, aiming to reduce both the medical examination cost and the associated health risks for patients.
- Score: 4.4202829112545015
- License:
- Abstract: Positron Emission Tomography (PET) and Computed Tomography (CT) are essential for diagnosing, staging, and monitoring various diseases, particularly cancer. Despite their importance, the use of PET/CT systems is limited by the necessity for radioactive materials, the scarcity of PET scanners, and the high cost associated with PET imaging. In contrast, CT scanners are more widely available and significantly less expensive. In response to these challenges, our study addresses the issue of generating PET images from CT images, aiming to reduce both the medical examination cost and the associated health risks for patients. Our contributions are twofold: First, we introduce a conditional diffusion model named CPDM, which, to our knowledge, is one of the initial attempts to employ a diffusion model for translating from CT to PET images. Second, we provide the largest CT-PET dataset to date, comprising 2,028,628 paired CT-PET images, which facilitates the training and evaluation of CT-to-PET translation models. For the CPDM model, we incorporate domain knowledge to develop two conditional maps: the Attention map and the Attenuation map. The former helps the diffusion process focus on areas of interest, while the latter improves PET data correction and ensures accurate diagnostic information. Experimental evaluations across various benchmarks demonstrate that CPDM surpasses existing methods in generating high-quality PET images in terms of multiple metrics. The source code and data samples are available at https://github.com/thanhhff/CPDM.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT [4.376648893167674]
The autoPET III Challenge focuses on advancing automated segmentation of tumor lesions in PET/CT images.
We developed a classifier that identifies the tracer of the given PET/CT based on the Maximum Intensity Projection of the PET scan.
Our final submission achieves cross-validation Dice scores of 76.90% and 61.33% for the publicly available FDG and PSMA datasets.
arXiv Detail & Related papers (2024-09-18T17:16:57Z) - End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
We propose a deep learning procedure called End-to-End Material Decomposition (E2E-DEcomp) for quantitative material decomposition.
We show the effectiveness of the proposed direct E2E-DEcomp method on the AAPM spectral CT dataset.
arXiv Detail & Related papers (2024-06-01T16:20:59Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
We design a novel two-phase multi-dose-level PET reconstruction algorithm with dose level awareness.
The pre-training phase is devised to explore both fine-grained discriminative features and effective semantic representation.
The SPET prediction phase adopts a coarse prediction network utilizing pre-learned dose level prior to generate preliminary result.
arXiv Detail & Related papers (2024-04-02T01:57:08Z) - Score-Based Generative Models for PET Image Reconstruction [38.72868748574543]
We propose several PET-specific adaptations of score-based generative models.
The proposed framework is developed for both 2D and 3D PET.
In addition, we provide an extension to guided reconstruction using magnetic resonance images.
arXiv Detail & Related papers (2023-08-27T19:43:43Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
This paper presents a coarse-to-fine PET reconstruction framework that consists of a coarse prediction module (CPM) and an iterative refinement module (IRM)
By delegating most of the computational overhead to the CPM, the overall sampling speed of our method can be significantly improved.
Two additional strategies, i.e., an auxiliary guidance strategy and a contrastive diffusion strategy, are proposed and integrated into the reconstruction process.
arXiv Detail & Related papers (2023-08-20T04:10:36Z) - Exploring Vanilla U-Net for Lesion Segmentation from Whole-body
FDG-PET/CT Scans [16.93163630413171]
Since FDG-PET scans only provide metabolic information, healthy tissue or benign disease with irregular glucose consumption may be mistaken for cancer.
In this paper, we explore the potential of U-Net for lesion segmentation in whole-body FDG-PET/CT scans from three aspects, including network architecture, data preprocessing, and data augmentation.
Our method achieves first place in both preliminary and final leaderboards of the autoPET 2022 challenge.
arXiv Detail & Related papers (2022-10-14T03:37:18Z) - PriorNet: lesion segmentation in PET-CT including prior tumor appearance
information [0.0]
We propose a two-step approach to improve the segmentation performances of tumoral lesions in PET-CT images.
The first step generates a prior tumor appearance map from the PET-CT volumes, regarded as prior tumor information.
The second step, consisting of a standard U-Net, receives the prior tumor appearance map and PET-CT images to generate the lesion mask.
arXiv Detail & Related papers (2022-10-05T12:31:42Z) - A resource-efficient deep learning framework for low-dose brain PET
image reconstruction and analysis [13.713286047709982]
We propose a resource-efficient deep learning framework for L-PET reconstruction and analysis, referred to as transGAN-SDAM.
The transGAN generates higher quality F-PET images, and then the SDAM integrates the spatial information of a sequence of generated F-PET slices to synthesize whole-brain F-PET images.
arXiv Detail & Related papers (2022-02-14T08:40:19Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.