PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference
- URL: http://arxiv.org/abs/2410.21966v2
- Date: Sat, 02 Nov 2024 07:20:58 GMT
- Title: PrefPaint: Aligning Image Inpainting Diffusion Model with Human Preference
- Authors: Kendong Liu, Zhiyu Zhu, Chuanhao Li, Hui Liu, Huanqiang Zeng, Junhui Hou,
- Abstract summary: We make the first attempt to align diffusion models for image inpainting with human aesthetic standards via a reinforcement learning framework.
We train a reward model with a dataset we construct, consisting of nearly 51,000 images annotated with human preferences.
Experiments on inpainting comparison and downstream tasks, such as image extension and 3D reconstruction, demonstrate the effectiveness of our approach.
- Score: 62.72779589895124
- License:
- Abstract: In this paper, we make the first attempt to align diffusion models for image inpainting with human aesthetic standards via a reinforcement learning framework, significantly improving the quality and visual appeal of inpainted images. Specifically, instead of directly measuring the divergence with paired images, we train a reward model with the dataset we construct, consisting of nearly 51,000 images annotated with human preferences. Then, we adopt a reinforcement learning process to fine-tune the distribution of a pre-trained diffusion model for image inpainting in the direction of higher reward. Moreover, we theoretically deduce the upper bound on the error of the reward model, which illustrates the potential confidence of reward estimation throughout the reinforcement alignment process, thereby facilitating accurate regularization. Extensive experiments on inpainting comparison and downstream tasks, such as image extension and 3D reconstruction, demonstrate the effectiveness of our approach, showing significant improvements in the alignment of inpainted images with human preference compared with state-of-the-art methods. This research not only advances the field of image inpainting but also provides a framework for incorporating human preference into the iterative refinement of generative models based on modeling reward accuracy, with broad implications for the design of visually driven AI applications. Our code and dataset are publicly available at https://prefpaint.github.io.
Related papers
- Towards Unsupervised Blind Face Restoration using Diffusion Prior [12.69610609088771]
Blind face restoration methods have shown remarkable performance when trained on large-scale synthetic datasets with supervised learning.
These datasets are often generated by simulating low-quality face images with a handcrafted image degradation pipeline.
In this paper, we address this issue by using only a set of input images, with unknown degradations and without ground truth targets, to fine-tune a restoration model.
Our best model also achieves the state-of-the-art results on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-10-06T20:38:14Z) - Diffusion-based image inpainting with internal learning [4.912318087940015]
We propose lightweight diffusion models for image inpainting that can be trained on a single image, or a few images.
We show that our approach competes with large state-of-the-art models in specific cases.
arXiv Detail & Related papers (2024-06-06T16:04:06Z) - DiffHarmony: Latent Diffusion Model Meets Image Harmonization [11.500358677234939]
Diffusion models have promoted the rapid development of image-to-image translation tasks.
Fine-tuning pre-trained latent diffusion models from scratch is computationally intensive.
In this paper, we adapt a pre-trained latent diffusion model to the image harmonization task to generate harmonious but potentially blurry initial images.
arXiv Detail & Related papers (2024-04-09T09:05:23Z) - Large-scale Reinforcement Learning for Diffusion Models [30.164571425479824]
Text-to-image diffusion models are susceptible to implicit biases that arise from web-scale text-image training pairs.
We present an effective scalable algorithm to improve diffusion models using Reinforcement Learning (RL)
We show how our approach substantially outperforms existing methods for aligning diffusion models with human preferences.
arXiv Detail & Related papers (2024-01-20T08:10:43Z) - Aligning Text-to-Image Diffusion Models with Reward Backpropagation [62.45086888512723]
We propose AlignProp, a method that aligns diffusion models to downstream reward functions using end-to-end backpropagation of the reward gradient.
We show AlignProp achieves higher rewards in fewer training steps than alternatives, while being conceptually simpler.
arXiv Detail & Related papers (2023-10-05T17:59:18Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Emu: Enhancing Image Generation Models Using Photogenic Needles in a
Haystack [75.00066365801993]
Training text-to-image models with web scale image-text pairs enables the generation of a wide range of visual concepts from text.
These pre-trained models often face challenges when it comes to generating highly aesthetic images.
We propose quality-tuning to guide a pre-trained model to exclusively generate highly visually appealing images.
arXiv Detail & Related papers (2023-09-27T17:30:19Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - A Generic Approach for Enhancing GANs by Regularized Latent Optimization [79.00740660219256]
We introduce a generic framework called em generative-model inference that is capable of enhancing pre-trained GANs effectively and seamlessly.
Our basic idea is to efficiently infer the optimal latent distribution for the given requirements using Wasserstein gradient flow techniques.
arXiv Detail & Related papers (2021-12-07T05:22:50Z) - Image Completion via Inference in Deep Generative Models [16.99337751292915]
We consider image completion from the perspective of amortized inference in an image generative model.
We demonstrate superior sample quality and diversity compared to prior art on the CIFAR-10 and FFHQ-256 datasets.
arXiv Detail & Related papers (2021-02-24T02:59:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.