Multi-modal Speech Emotion Recognition via Feature Distribution Adaptation Network
- URL: http://arxiv.org/abs/2410.22023v3
- Date: Sat, 02 Nov 2024 12:52:23 GMT
- Title: Multi-modal Speech Emotion Recognition via Feature Distribution Adaptation Network
- Authors: Shaokai Li, Yixuan Ji, Peng Song, Haoqin Sun, Wenming Zheng,
- Abstract summary: We propose a novel deep inductive transfer learning framework, named feature distribution adaptation network.
Our method aims to use deep transfer learning strategies to align visual and audio feature distributions to obtain consistent representation of emotion.
- Score: 12.200776612016698
- License:
- Abstract: In this paper, we propose a novel deep inductive transfer learning framework, named feature distribution adaptation network, to tackle the challenging multi-modal speech emotion recognition problem. Our method aims to use deep transfer learning strategies to align visual and audio feature distributions to obtain consistent representation of emotion, thereby improving the performance of speech emotion recognition. In our model, the pre-trained ResNet-34 is utilized for feature extraction for facial expression images and acoustic Mel spectrograms, respectively. Then, the cross-attention mechanism is introduced to model the intrinsic similarity relationships of multi-modal features. Finally, the multi-modal feature distribution adaptation is performed efficiently with feed-forward network, which is extended using the local maximum mean discrepancy loss. Experiments are carried out on two benchmark datasets, and the results demonstrate that our model can achieve excellent performance compared with existing ones.
Related papers
- AIMDiT: Modality Augmentation and Interaction via Multimodal Dimension Transformation for Emotion Recognition in Conversations [57.99479708224221]
We propose a novel framework called AIMDiT to solve the problem of multimodal fusion of deep features.
Experiments conducted using our AIMDiT framework on the public benchmark dataset MELD reveal 2.34% and 2.87% improvements in terms of the Acc-7 and w-F1 metrics.
arXiv Detail & Related papers (2024-04-12T11:31:18Z) - AMuSE: Adaptive Multimodal Analysis for Speaker Emotion Recognition in
Group Conversations [39.79734528362605]
Multimodal Attention Network captures cross-modal interactions at various levels of spatial abstraction.
AMuSE model condenses both spatial and temporal features into two dense descriptors: speaker-level and utterance-level.
arXiv Detail & Related papers (2024-01-26T19:17:05Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Cross-Language Speech Emotion Recognition Using Multimodal Dual
Attention Transformers [5.538923337818467]
State-of-the-art systems are unable to achieve improved performance in cross-language settings.
We propose a Multimodal Dual Attention Transformer model to improve cross-language SER.
arXiv Detail & Related papers (2023-06-23T22:38:32Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
We present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks.
Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix.
Our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
arXiv Detail & Related papers (2022-11-27T14:46:01Z) - Probing Visual-Audio Representation for Video Highlight Detection via
Hard-Pairs Guided Contrastive Learning [23.472951216815765]
Key to effective video representations is cross-modal representation learning and fine-grained feature discrimination.
In this paper, we enrich intra-modality and cross-modality relations for representation modeling.
We enlarge the discriminative power of feature embedding with a hard-pairs guided contrastive learning scheme.
arXiv Detail & Related papers (2022-06-21T07:29:37Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - A cross-modal fusion network based on self-attention and residual
structure for multimodal emotion recognition [7.80238628278552]
We propose a novel cross-modal fusion network based on self-attention and residual structure (CFN-SR) for multimodal emotion recognition.
To verify the effectiveness of the proposed method, we conduct experiments on the RAVDESS dataset.
The experimental results show that the proposed CFN-SR achieves the state-of-the-art and obtains 75.76% accuracy with 26.30M parameters.
arXiv Detail & Related papers (2021-11-03T12:24:03Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.