論文の概要: An Actor-Critic Approach to Boosting Text-to-SQL Large Language Model
- arxiv url: http://arxiv.org/abs/2410.22082v1
- Date: Mon, 28 Oct 2024 15:22:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:39:35.935475
- Title: An Actor-Critic Approach to Boosting Text-to-SQL Large Language Model
- Title(参考訳): アクター・クリティカルアプローチによるテキスト-SQL大言語モデルの強化
- Authors: Ziyang Zheng, Haipeng Jing, Canyu Rui, Askar Hamdulla, Dong Wang,
- Abstract要約: Actor-Critic (AC) と呼ばれるT2S拡張手法を提案する。
我々は,同じ大言語モデル (LLM) を用いて2つの役割を設計する。
批評家が生成したsqlが間違っていると信じている場合、アクターにthesqlを再生して再度評価するように通知する。
我々は11個のLDMを用いて、スパイダーと関連するデータセットに関する広範な実験を行い、アクター・クライト法がT2Sの性能を一貫して改善することを実証した。
- 参考スコア(独自算出の注目度): 7.01795534825797
- License:
- Abstract: Text-To-SQL (T2S) conversion based on large language models (LLMs) has found a wide range of applications, by leveraging the capabilities of LLMs in interpreting the query intent expressed in natural language. Existing research focuses on suitable representations for data schema and/or questions, task-specific instructions and representative examples, and complicated inference pipelines. All these methods are empirical and task specific, without a theoretical bound on performance. In this paper, we propose a simple, general, and performance guaranteed T2S enhancement approach called Actor-Critic (AC). Specifically, we design two roles using the same LLM: an Actor to produce SQL queries and a Critic to evaluate the produced SQL. If the Critic believes the produced SQL is wrong, it notifies the Actor to reproduce the SQL and perform evaluation again. By this simple iterative process, expected performance can be derived in theory. We conducted extensive experiments on the Spider and related datasets with eleven LLMs, and demonstrated that the Actor-Critic method consistently improves the performance of T2S, thus serving as a general enhancement approach for T2S conversion.
- Abstract(参考訳): 大規模言語モデル(LLM)に基づくテキスト・トゥ・SQL変換(T2S)は、自然言語で表現されたクエリインテントを解釈するLLMの機能を活用することで、幅広い応用を見出した。
既存の研究は、データスキーマと/または質問、タスク固有の命令と代表例、複雑な推論パイプラインの適切な表現に焦点を当てている。
これらの手法はすべて経験的かつタスク固有であり、性能に理論的拘束力はない。
本稿では,Actor-Critic (AC) と呼ばれるT2S拡張手法を提案する。
具体的には、同じLLMを使って2つのロールを設計する: SQLクエリを生成するアクターと、生成されたSQLを評価するCriticである。
もしCryticが生成したSQLが間違っていると信じているなら、ActorにSQLを再生して再度評価するように通知する。
この単純な反復過程により、期待された性能は理論上引き出すことができる。
我々は11個のLLMを用いてスパイダーと関連するデータセットの広範な実験を行い、アクター・クライト法はT2Sの性能を一貫して改善し、T2S変換の一般的な拡張手法として機能することを示した。
関連論文リスト
- PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
大規模言語モデル(LLM)は、テキスト・トゥ・センス・タスクの強力なツールとして登場した。
本研究では,クエリグループパーティショニングを用いることで,単一問題に特有の思考プロセスの学習に集中できることを示す。
論文 参考訳(メタデータ) (2024-09-21T09:33:14Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTrieverは、隠れた状態の重み付けを学習する新しいデモ検索フレームワークである。
提案手法は1ショットNL2タスクにおける最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2024-06-12T06:33:54Z) - CoE-SQL: In-Context Learning for Multi-Turn Text-to-SQL with Chain-of-Editions [22.493487741249716]
大規模言語モデル(LLM)は、様々なドメインやタスクにおいて印象的な機能を持つことが実証されている。
マルチターンテキスト・ツー・タスクにおけるプロンプト設計の問題について検討し,LLMの推論能力の向上を図る。
論文 参考訳(メタデータ) (2024-05-04T16:56:14Z) - PURPLE: Making a Large Language Model a Better SQL Writer [14.627323505405327]
NL2タスクに必要な論理演算子構成を含む実演を検索することで精度を向上させるPURPLEを提案する。
PURPLEは、一般的なNL2ベンチマークの検証セット上で80.5%の正確な一致精度と87.8%の実行一致精度という、最先端の新たなパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-03-29T07:01:29Z) - PET-SQL: A Prompt-Enhanced Two-Round Refinement of Text-to-SQL with Cross-consistency [19.067737007347613]
スパイダーベンチマークで新しいSOTA結果が得られ、実行精度は87.6%である。
提案手法は, 87.6%の精度で, スパイダーベンチマークで新しいSOTA結果が得られる。
論文 参考訳(メタデータ) (2024-03-13T02:32:41Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。