Enhancing Code Annotation Reliability: Generative AI's Role in Comment Quality Assessment Models
- URL: http://arxiv.org/abs/2410.22323v1
- Date: Tue, 29 Oct 2024 17:57:27 GMT
- Title: Enhancing Code Annotation Reliability: Generative AI's Role in Comment Quality Assessment Models
- Authors: Seetharam Killivalavan, Durairaj Thenmozhi,
- Abstract summary: We integrate 1,437 newly generated code-comment pairs, labeled as "Useful" or "Not Useful," into an existing C-language dataset of 9,048 pairs.
Our approach yields a 5.78% precision increase in the Support Vector Machine (SVM) model, improving from 0.79 to 0.8478, and a 2.17% recall boost in the Artificial Neural Network (ANN) model, rising from 0.731 to 0.7527.
- Score: 0.0
- License:
- Abstract: This paper explores a novel method for enhancing binary classification models that assess code comment quality, leveraging Generative Artificial Intelligence to elevate model performance. By integrating 1,437 newly generated code-comment pairs, labeled as "Useful" or "Not Useful" and sourced from various GitHub repositories, into an existing C-language dataset of 9,048 pairs, we demonstrate substantial model improvements. Using an advanced Large Language Model, our approach yields a 5.78% precision increase in the Support Vector Machine (SVM) model, improving from 0.79 to 0.8478, and a 2.17% recall boost in the Artificial Neural Network (ANN) model, rising from 0.731 to 0.7527. These results underscore Generative AI's value in advancing code comment classification models, offering significant potential for enhanced accuracy in software development and quality control. This study provides a promising outlook on the integration of generative techniques for refining machine learning models in practical software engineering settings.
Related papers
- Rare Class Prediction Model for Smart Industry in Semiconductor Manufacturing [1.3955252961896323]
This study develops a rare class prediction approach for in situ data collected from a smart semiconductor manufacturing process.
The primary objective is to build a model that addresses issues of noise and class imbalance, enhancing class separation.
The model was evaluated using various performance metrics, with ROC curves showing an AUC of 0.95, a precision of 0.66, and a recall of 0.96
arXiv Detail & Related papers (2024-06-06T22:09:43Z) - Language Models for Code Completion: A Practical Evaluation [13.174471984950857]
This study provides both quantitative and qualitative assessments of three public code language models when completing real-world code.
We collected real auto-completion usage data for over a year from more than 1200 users, resulting in over 600K valid completions.
We found that 66.3% of failures were due to the models' limitations, 24.4% occurred due to inappropriate model usage in a development context, and 9.3% were valid requests that developers overwrote.
arXiv Detail & Related papers (2024-02-25T20:43:55Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Software Metadata Classification based on Generative Artificial
Intelligence [0.0]
This paper presents a novel approach to enhance the performance of binary code comment quality classification models through the application of Generative Artificial Intelligence (AI)
By leveraging the OpenAI API, a dataset comprising 1239 newly generated code-comment pairs has been labelled as "Useful" or "Not Useful"
The results affirm the effectiveness of this methodology, indicating its applicability in broader contexts within software development and quality assurance domains.
arXiv Detail & Related papers (2023-10-14T07:38:16Z) - Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model [77.19693792957614]
We propose to make neural machine translation (NMT) models quality-aware by training them to estimate the quality of their own output.
We obtain quality gains similar or even superior to quality reranking approaches, but with the efficiency of single pass decoding.
arXiv Detail & Related papers (2023-10-10T15:33:51Z) - On the Reliability and Explainability of Language Models for Program
Generation [15.569926313298337]
We study the capabilities and limitations of automated program generation approaches.
We employ advanced explainable AI approaches to highlight the tokens that significantly contribute to the code transformation.
Our analysis reveals that, in various experimental scenarios, language models can recognize code grammar and structural information, but they exhibit limited robustness to changes in input sequences.
arXiv Detail & Related papers (2023-02-19T14:59:52Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
We propose a data-driven approach to enhance models' signal-awareness.
We combine the SE concept of code complexity with the AI technique of curriculum learning.
We achieve up to 4.8x improvement in model signal awareness.
arXiv Detail & Related papers (2021-11-10T17:58:18Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Non-Autoregressive Translation by Learning Target Categorical Codes [59.840510037250944]
We propose CNAT, which learns implicitly categorical codes as latent variables into the non-autoregressive decoding.
Experiment results show that our model achieves comparable or better performance in machine translation tasks.
arXiv Detail & Related papers (2021-03-21T14:12:34Z) - DeBERTa: Decoding-enhanced BERT with Disentangled Attention [119.77305080520718]
We propose a new model architecture DeBERTa that improves the BERT and RoBERTa models using two novel techniques.
We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understanding (NLU) and natural langauge generation (NLG) downstream tasks.
arXiv Detail & Related papers (2020-06-05T19:54:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.