論文の概要: Local Policies Enable Zero-shot Long-horizon Manipulation
- arxiv url: http://arxiv.org/abs/2410.22332v1
- Date: Tue, 29 Oct 2024 17:59:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:41:16.629064
- Title: Local Policies Enable Zero-shot Long-horizon Manipulation
- Title(参考訳): ゼロショットロングホライゾンマニピュレーションを可能にするローカルポリシ
- Authors: Murtaza Dalal, Min Liu, Walter Talbott, Chen Chen, Deepak Pathak, Jian Zhang, Ruslan Salakhutdinov,
- Abstract要約: ManipGenを紹介します。これはsim2real転送のための新しいポリシーのクラスであるローカルポリシーを活用します。
ManipGenは、SayCan、OpenVLA、LLMTrajGen、VoxPoserといったSOTAアプローチを、50の現実世界操作タスクで36%、76%、62%、60%で上回っている。
- 参考スコア(独自算出の注目度): 80.1161776000682
- License:
- Abstract: Sim2real for robotic manipulation is difficult due to the challenges of simulating complex contacts and generating realistic task distributions. To tackle the latter problem, we introduce ManipGen, which leverages a new class of policies for sim2real transfer: local policies. Locality enables a variety of appealing properties including invariances to absolute robot and object pose, skill ordering, and global scene configuration. We combine these policies with foundation models for vision, language and motion planning and demonstrate SOTA zero-shot performance of our method to Robosuite benchmark tasks in simulation (97%). We transfer our local policies from simulation to reality and observe they can solve unseen long-horizon manipulation tasks with up to 8 stages with significant pose, object and scene configuration variation. ManipGen outperforms SOTA approaches such as SayCan, OpenVLA, LLMTrajGen and VoxPoser across 50 real-world manipulation tasks by 36%, 76%, 62% and 60% respectively. Video results at https://mihdalal.github.io/manipgen/
- Abstract(参考訳): ロボット操作のためのSim2realは、複雑な接触をシミュレートし、現実的なタスク分布を生成するという課題のために困難である。
後者の問題に対処するため、我々は、sim2real Transferのための新しいポリシークラスであるローカルポリシーを利用するManipGenを紹介した。
局所性は、絶対的なロボットやオブジェクトのポーズ、スキルオーダ、グローバルなシーン構成に対する不変性など、さまざまな魅力的な特性を可能にする。
これらのポリシーを視覚,言語,運動計画の基礎モデルと組み合わせて,本手法のSOTAゼロショット性能をシミュレーションにおけるRobosuiteベンチマークタスクに示す(97%)。
シミュレーションから現実へローカルポリシーを転送し、最大8段階までの長期操作タスクを、重要なポーズ、オブジェクト、シーン構成のバリエーションで解決できることを観察する。
ManipGenは、SayCan、OpenVLA、LLMTrajGen、VoxPoserといったSOTAアプローチを、50の現実世界操作タスクで36%、76%、62%、60%で上回っている。
https://mihdalal.github.io/manipgen/
関連論文リスト
- TRANSIC: Sim-to-Real Policy Transfer by Learning from Online Correction [25.36756787147331]
シミュレーションの学習と実世界への学習は、ジェネラリストロボットを可能にする可能性がある。
そこで本研究では,Human-in-the-loopフレームワークをベースとしたSIM-to-real転送を実現するためのデータ駆動型手法を提案する。
本手法は,家具組立などの複雑かつ接触に富んだ操作作業において,シミュレートから現実への伝達を成功させることができることを示す。
論文 参考訳(メタデータ) (2024-05-16T17:59:07Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
シミュレーションにおけるビジュモータポリシーの学習は、現実世界よりも安全で安価である。
しかし、シミュレーションデータと実データとの相違により、シミュレータ訓練されたポリシーは実際のロボットに転送されると失敗することが多い。
視覚的なsim-to-real領域ギャップを埋める一般的なアプローチは、ドメインランダム化(DR)である。
論文 参考訳(メタデータ) (2023-07-28T05:47:24Z) - RH20T: A Comprehensive Robotic Dataset for Learning Diverse Skills in
One-Shot [56.130215236125224]
オープンドメインでのロボット操作における重要な課題は、ロボットの多様性と一般化可能なスキルの獲得方法である。
単発模倣学習の最近の研究は、訓練されたポリシーを実証に基づく新しいタスクに移行する可能性を示唆している。
本稿では,エージェントがマルチモーダルな知覚で数百の現実世界のスキルを一般化する可能性を解き放つことを目的とする。
論文 参考訳(メタデータ) (2023-07-02T15:33:31Z) - HACMan: Learning Hybrid Actor-Critic Maps for 6D Non-Prehensile Manipulation [29.01984677695523]
本稿では6次元非包括的操作のための強化学習手法であるHybrid Actor-Critic Maps for Manipulation (HACMan)を紹介する。
シミュレーションおよび実世界における6次元オブジェクトポーズアライメントタスクにおけるHACManの評価を行った。
代替アクション表現と比較して、HACManは最高のベースラインの3倍以上の成功率を達成する。
論文 参考訳(メタデータ) (2023-05-06T05:55:27Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
我々は人型ロボットの手で頑健な操作を行える政策を訓練する。
本研究は,各種ハードウェアおよびシミュレータのデクスタラス操作におけるsim-to-real転送の可能性を再確認する。
論文 参考訳(メタデータ) (2022-10-25T01:51:36Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
シミュレーションで学習したモデルを用いて、単純なタスクプランナの構成要素をグラウンド化することで、見知らぬロボットタスクを達成できるシミュレート・トゥ・リアル・トレーニングのアプローチについて述べる。
シミュレーションでは91.6%から98%,実世界の成功率は10%から80%に増加した。
論文 参考訳(メタデータ) (2020-11-17T15:24:01Z) - Sim-to-Real Transfer for Vision-and-Language Navigation [70.86250473583354]
本研究では,従来は目に見えなかった環境下でロボットを解放し,制約のない自然言語ナビゲーション指示に従うという課題について検討する。
VLN(Vision-and-Language Navigation)の課題に関する最近の研究は、シミュレーションにおいて大きな進歩を遂げている。
ロボット工学における本研究の意義を評価するため,シミュレーションで訓練されたVLNエージェントを物理ロボットに転送する。
論文 参考訳(メタデータ) (2020-11-07T16:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。