論文の概要: Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection
- arxiv url: http://arxiv.org/abs/2410.22445v1
- Date: Tue, 29 Oct 2024 18:27:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:23:31.182850
- Title: Embedding Watermarks in Diffusion Process for Model Intellectual Property Protection
- Title(参考訳): モデル知的財産保護のための拡散過程における透かしの埋め込み
- Authors: Jijia Yang, Sen Peng, Xiaohua Jia,
- Abstract要約: 拡散過程全体に透かしを埋め込むことにより,新しい透かしの枠組みを導入する。
詳細な理論的解析と実験的検証により,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 16.36712147596369
- License:
- Abstract: In practical application, the widespread deployment of diffusion models often necessitates substantial investment in training. As diffusion models find increasingly diverse applications, concerns about potential misuse highlight the imperative for robust intellectual property protection. Current protection strategies either employ backdoor-based methods, integrating a watermark task as a simpler training objective with the main model task, or embedding watermarks directly into the final output samples. However, the former approach is fragile compared to existing backdoor defense techniques, while the latter fundamentally alters the expected output. In this work, we introduce a novel watermarking framework by embedding the watermark into the whole diffusion process, and theoretically ensure that our final output samples contain no additional information. Furthermore, we utilize statistical algorithms to verify the watermark from internally generated model samples without necessitating triggers as conditions. Detailed theoretical analysis and experimental validation demonstrate the effectiveness of our proposed method.
- Abstract(参考訳): 現実的な応用では、拡散モデルの広範な展開は、しばしば訓練にかなりの投資を必要とする。
拡散モデルがますます多様な応用を見出すにつれ、潜在的な誤用に対する懸念は、堅牢な知的財産保護の必須点を浮き彫りにしている。
現在の保護戦略は、バックドアベースの手法を採用するか、ウォーターマークタスクをメインモデルタスクとより単純なトレーニング目標として統合するか、あるいは最終出力サンプルに直接ウォーターマークを埋め込むかのいずれかである。
しかし,従来のバックドア防御技術に比べ,従来のアプローチは脆弱であり,後者は期待される出力を根本的に変更する。
本研究では,透かしを拡散過程全体に埋め込むことにより,新しい透かしフレームワークを導入し,最終的な出力サンプルに追加情報がないことを理論的に保証する。
さらに、統計的アルゴリズムを用いて、トリガを条件として必要とせずに内部で生成されたモデルサンプルから透かしを検証する。
詳細な理論的解析と実験的検証により,提案手法の有効性が示された。
関連論文リスト
- Universally Optimal Watermarking Schemes for LLMs: from Theory to Practice [35.319577498993354]
大きな言語モデル(LLM)は人間の効率を高めるが、誤用リスクを引き起こす。
本稿では,LLMの透かしのための新しい理論的枠組みを提案する。
我々は,検出性能を最大化するために,透かし方式と検出器の両方を共同で最適化する。
論文 参考訳(メタデータ) (2024-10-03T18:28:10Z) - On the Weaknesses of Backdoor-based Model Watermarking: An Information-theoretic Perspective [39.676548104635096]
機械学習モデルの知的財産権の保護は、AIセキュリティの急激な懸念として浮上している。
モデルウォーターマーキングは、機械学習モデルのオーナシップを保護するための強力なテクニックである。
本稿では,既存の手法の限界を克服するため,新しいウォーターマーク方式であるIn-distriion Watermark Embedding (IWE)を提案する。
論文 参考訳(メタデータ) (2024-09-10T00:55:21Z) - Watermarking Recommender Systems [52.207721219147814]
本稿では,レコメンダシステムに特化した新しい手法であるAutoregressive Out-of-Distribution Watermarking (AOW)を紹介する。
提案手法では,初期項目の選択とオラクルモデルによるクエリを行い,その後に予測スコアの小さい項目を選択する。
透かしの有効性を評価するため、このモデルでは、切り捨てられた透かしシーケンスが与えられた後続の項目を予測することを課題とする。
論文 参考訳(メタデータ) (2024-07-17T06:51:24Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
大規模言語モデル(LLM)は、さまざまな機械学習タスクにまたがる汎用インテリジェンスを示す。
敵はモデル抽出攻撃を利用して モデル生成で符号化された モデルインテリジェンスを盗むことができる
ウォーターマーキング技術は、モデル生成コンテンツにユニークな識別子を埋め込むことによって、このような攻撃を防御する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-03T06:41:48Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - Learnable Linguistic Watermarks for Tracing Model Extraction Attacks on Large Language Models [20.44680783275184]
モデル抽出攻撃に対する現在の透かし技術は、モデルロジットの信号挿入や生成されたテキストの後処理に依存している。
大規模言語モデル(LLM)に学習可能な言語透かしを埋め込む新しい手法を提案する。
制御ノイズをトークン周波数分布に導入し,統計的に識別可能な透かしを埋め込むことにより,LLMの出力分布を微調整する。
論文 参考訳(メタデータ) (2024-04-28T14:45:53Z) - Probabilistically Robust Watermarking of Neural Networks [4.332441337407564]
我々は、攻撃を盗む機能に対するレジリエンスを示す新しいトリガーセットベースの透かし手法を導入する。
私たちのアプローチでは、追加のモデルトレーニングは必要とせず、どんなモデルアーキテクチャにも適用できます。
論文 参考訳(メタデータ) (2024-01-16T10:32:13Z) - Performance-lossless Black-box Model Watermarking [69.22653003059031]
本稿では,モデル知的財産権を保護するために,ブランチバックドアベースのモデル透かしプロトコルを提案する。
さらに,プロトコルに対する潜在的な脅威を分析し,言語モデルに対するセキュアで実現可能な透かしインスタンスを提供する。
論文 参考訳(メタデータ) (2023-12-11T16:14:04Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - Intellectual Property Protection of Diffusion Models via the Watermark
Diffusion Process [22.38407658885059]
本稿では,タスク生成時に透かしを印字せずに拡散モデルに新しい透かし手法であるWDMを紹介する。
タスク生成のための標準的な拡散プロセスと並行して、透かしを埋め込むための透かし拡散プロセス(WDP)を同時に学習するモデルを訓練する。
論文 参考訳(メタデータ) (2023-06-06T06:31:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。