Brain age identification from diffusion MRI synergistically predicts neurodegenerative disease
- URL: http://arxiv.org/abs/2410.22454v1
- Date: Tue, 29 Oct 2024 18:42:03 GMT
- Title: Brain age identification from diffusion MRI synergistically predicts neurodegenerative disease
- Authors: Chenyu Gao, Michael E. Kim, Karthik Ramadass, Praitayini Kanakaraj, Aravind R. Krishnan, Adam M. Saunders, Nancy R. Newlin, Ho Hin Lee, Qi Yang, Warren D. Taylor, Brian D. Boyd, Lori L. Beason-Held, Susan M. Resnick, Lisa L. Barnes, David A. Bennett, Katherine D. Van Schaik, Derek B. Archer, Timothy J. Hohman, Angela L. Jefferson, Ivana IĆĄgum, Daniel Moyer, Yuankai Huo, Kurt G. Schilling, Lianrui Zuo, Shunxing Bao, Nazirah Mohd Khairi, Zhiyuan Li, Christos Davatzikos, Bennett A. Landman,
- Abstract summary: We propose a method for brain age identification from dMRI that minimizes the model's use of macrostructural information.
We observe difference between our dMRI-based brain age and T1w MRI-based brain age across stages of neurodegeneration.
- Score: 13.531048347211021
- License:
- Abstract: Estimated brain age from magnetic resonance image (MRI) and its deviation from chronological age can provide early insights into potential neurodegenerative diseases, supporting early detection and implementation of prevention strategies. Diffusion MRI (dMRI), a widely used modality for brain age estimation, presents an opportunity to build an earlier biomarker for neurodegenerative disease prediction because it captures subtle microstructural changes that precede more perceptible macrostructural changes. However, the coexistence of macro- and micro-structural information in dMRI raises the question of whether current dMRI-based brain age estimation models are leveraging the intended microstructural information or if they inadvertently rely on the macrostructural information. To develop a microstructure-specific brain age, we propose a method for brain age identification from dMRI that minimizes the model's use of macrostructural information by non-rigidly registering all images to a standard template. Imaging data from 13,398 participants across 12 datasets were used for the training and evaluation. We compare our brain age models, trained with and without macrostructural information minimized, with an architecturally similar T1-weighted (T1w) MRI-based brain age model and two state-of-the-art T1w MRI-based brain age models that primarily use macrostructural information. We observe difference between our dMRI-based brain age and T1w MRI-based brain age across stages of neurodegeneration, with dMRI-based brain age being older than T1w MRI-based brain age in participants transitioning from cognitively normal (CN) to mild cognitive impairment (MCI), but younger in participants already diagnosed with Alzheimer's disease (AD). Approximately 4 years before MCI diagnosis, dMRI-based brain age yields better performance than T1w MRI-based brain ages in predicting transition from CN to MCI.
Related papers
- Anatomical Foundation Models for Brain MRIs [6.993491018326816]
AnatCL is an anatomical foundation model for brain MRIs that leverages anatomical information with a weakly contrastive learning approach.
To validate our approach we consider 12 different downstream tasks for diagnosis classification, and prediction of 10 different clinical assessment scores.
arXiv Detail & Related papers (2024-08-07T14:04:50Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Large Language Model-based FMRI Encoding of Language Functions for Subjects with Neurocognitive Disorder [53.575426835313536]
This paper explores language-related functional changes in older NCD adults using LLM-based fMRI encoding and brain scores.
We analyze the correlation between brain scores and cognitive scores at both whole-brain and language-related ROI levels.
Our findings reveal that higher cognitive abilities correspond to better brain scores, with correlations peaking in the middle temporal gyrus.
arXiv Detail & Related papers (2024-07-15T01:09:08Z) - Robust Brain Age Estimation via Regression Models and MRI-derived
Features [2.028990630951476]
We present a novel brain age estimation framework using the Open Big Healthy Brain (OpenBHB) dataset.
Our approach integrates three different MRI-derived region-wise features and different regression models, resulting in a highly accurate brain age estimation.
arXiv Detail & Related papers (2023-06-08T19:07:22Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Infant Brain Age Classification: 2D CNN Outperforms 3D CNN in Small
Dataset [0.14063138455565613]
Brain magnetic resonance imaging (MRI) of infants demonstrates a specific pattern of development beyond myelination.
With no standardized criteria, visual estimation of the structural maturity of the brain from MRI before three years of age remains dominated by inter-observer and intra-observer variability.
We explore the general feasibility to tackle this task, and the utility of different approaches, including two- and three-dimensional convolutional neural networks (CNN)
In the best performing approach, we achieved an accuracy of 0.90 [95% CI:0.86-0.94] using a 2D CNN on a central axial thick slab.
arXiv Detail & Related papers (2021-12-27T18:02:48Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Neurodevelopmental Age Estimation of Infants Using a 3D-Convolutional
Neural Network Model based on Fusion MRI Sequences [0.08341869765517104]
The ability to determine if the brain is developing normally is a key component of pediatric neuroradiology and neurology.
We investigated a three-dimensional convolutional neural network (3D CNN) to rapidly classify brain developmental age using common MRI sequences.
arXiv Detail & Related papers (2020-10-07T01:24:15Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.