論文の概要: FGCE: Feasible Group Counterfactual Explanations for Auditing Fairness
- arxiv url: http://arxiv.org/abs/2410.22591v2
- Date: Fri, 15 Nov 2024 12:02:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:20.464523
- Title: FGCE: Feasible Group Counterfactual Explanations for Auditing Fairness
- Title(参考訳): FGCE:公正を監査するためのグループ対実的説明の可能性
- Authors: Christos Fragkathoulas, Vasiliki Papanikou, Evaggelia Pitoura, Evimaria Terzi,
- Abstract要約: 本稿では,モデルフェアネスを監査するために,グループ対実的説明を生成する最初のグラフベースのフレームワークを提案する。
我々のフレームワークは、Fasible Group Counterfactual Explanations (FGCEs)と名付けられ、現実世界の現実性制約を捉え、類似の反事実を持つサブグループを構築する。
また、カウンターファクト・ジェネレーションにおける重要なトレードオフとして、カウンターファクト・ジェネレーションの件数、関連するコスト、達成された範囲の広さのバランスがあげられる。
- 参考スコア(独自算出の注目度): 4.749824105387293
- License:
- Abstract: This paper introduces the first graph-based framework for generating group counterfactual explanations to audit model fairness, a crucial aspect of trustworthy machine learning. Counterfactual explanations are instrumental in understanding and mitigating unfairness by revealing how inputs should change to achieve a desired outcome. Our framework, named Feasible Group Counterfactual Explanations (FGCEs), captures real-world feasibility constraints and constructs subgroups with similar counterfactuals, setting it apart from existing methods. It also addresses key trade-offs in counterfactual generation, including the balance between the number of counterfactuals, their associated costs, and the breadth of coverage achieved. To evaluate these trade-offs and assess fairness, we propose measures tailored to group counterfactual generation. Our experimental results on benchmark datasets demonstrate the effectiveness of our approach in managing feasibility constraints and trade-offs, as well as the potential of our proposed metrics in identifying and quantifying fairness issues.
- Abstract(参考訳): 本稿では、信頼に値する機械学習の重要な側面であるモデルフェアネスを監査するために、グループ対実的な説明を生成するための最初のグラフベースのフレームワークを紹介する。
事実的説明は、望ましい結果を達成するために入力がどのように変化するべきかを明らかにすることによって、不公平さを理解し緩和するのに役立つ。
我々のフレームワークは、Fasible Group Counterfactual Explanations (FGCEs) と呼ばれ、実世界の実現可能性制約を捉え、類似のカウンターファクトルを持つサブグループを構築し、既存の方法と区別する。
また、カウンターファクト・ジェネレーションにおける重要なトレードオフとして、カウンターファクト・ジェネレーションの件数、関連するコスト、達成された範囲の広さのバランスがあげられる。
これらのトレードオフを評価し,公平性を評価するために,グループ・デファクト・ジェネレーションに適した対策を提案する。
ベンチマークデータセットを用いた実験結果から,実現可能性制約やトレードオフの管理におけるアプローチの有効性に加えて,フェアネス問題の検出と定量化において提案した指標の可能性が示された。
関連論文リスト
- Finite-Sample and Distribution-Free Fair Classification: Optimal Trade-off Between Excess Risk and Fairness, and the Cost of Group-Blindness [14.421493372559762]
グループフェアネス制約下の二項分類におけるアルゴリズムフェアネスとグループブレンドネスの強制効果を定量化する。
制御された過剰リスクを伴う分布自由かつ有限サンプルフェアネスを保証するフェア分類のための統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-21T20:04:17Z) - Federated Fairness without Access to Sensitive Groups [12.888927461513472]
連合学習におけるグループフェアネスへの現在のアプローチは、トレーニング中に事前に定義されラベル付けされたセンシティブなグループが存在することを前提としている。
我々は、センシティブなグループや追加のラベルの事前定義された定義に依存しないグループフェアネスを保証するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-22T19:24:59Z) - Goodhart's Law Applies to NLP's Explanation Benchmarks [57.26445915212884]
ERASER(Comprehensiveness and sufficiency)メトリクスとEVAL-X(EVAL-X)メトリクスの2つのセットを批判的に検討する。
実験結果の予測や説明を変えることなく,モデル全体の包括性と充足率を劇的に向上させることができることを示す。
我々の結果は、現在のメトリクスが説明可能性の研究をガイドする能力に疑問を呈し、これらのメトリクスが正確に捉えるものを再評価する必要性を強調します。
論文 参考訳(メタデータ) (2023-08-28T03:03:03Z) - Fairness Aware Counterfactuals for Subgroups [8.593488857185678]
本稿では,サブグループのフェアネスを監査するフレームワークであるFACTS(Fairness Aware Counterfactuals for Subgroups)を紹介する。
我々は、特定のサブグループにおける個人の困難さの異なる側面を定式化し、談話を達成することを目的としている。
我々は、言論を達成するためのコストに対して、完全に不可避ではないが頑健な部分群フェアネスの概念を導入する。
論文 参考訳(メタデータ) (2023-06-26T18:03:56Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
本稿では,グループフェアネス手法のベンチマークフレームワークであるFair Fairness Benchmark(textsfFFB)を紹介する。
グループフェアネスの異なる概念を確実にするための最先端手法を包括的に分析する。
論文 参考訳(メタデータ) (2023-06-15T19:51:28Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
多変量時系列予測モデル(MTS)では変数間の性能不公平性が広く存在する。
フェアネスを意識したMTS予測のための新しいフレームワークであるFairForを提案する。
論文 参考訳(メタデータ) (2023-01-27T04:54:12Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
加速度予測感度は、入力特徴の摂動に対するモデルの予測感度に基づいて、機械学習モデルの公正度を測定する。
この計量は、群フェアネス(統計パリティ)と個人フェアネスという特定の概念と理論的に関連付けられることを示す。
論文 参考訳(メタデータ) (2022-03-16T15:00:33Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - Learning to Generate Fair Clusters from Demonstrations [27.423983748614198]
本稿では,専門家による限定的な実証に基づいて,問題に対する意図された公平性制約を特定する方法について述べる。
本稿では、実演からフェアネスメトリックを識別し、既存のオフザシェルフクラスタリング技術を用いてクラスタを生成するアルゴリズムを提案する。
本稿では,本手法を用いて解釈可能な解を生成する方法について検討する。
論文 参考訳(メタデータ) (2021-02-08T03:09:33Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。