SleepNetZero: Zero-Burden Zero-Shot Reliable Sleep Staging With Neural Networks Based on Ballistocardiograms
- URL: http://arxiv.org/abs/2410.22646v1
- Date: Wed, 30 Oct 2024 02:25:47 GMT
- Title: SleepNetZero: Zero-Burden Zero-Shot Reliable Sleep Staging With Neural Networks Based on Ballistocardiograms
- Authors: Shuzhen Li, Yuxin Chen, Xuesong Chen, Ruiyang Gao, Yupeng Zhang, Chao Yu, Yunfei Li, Ziyi Ye, Weijun Huang, Hongliang Yi, Yue Leng, Yi Wu,
- Abstract summary: Ballistocardiography(BCG) is a non-invasive, user-friendly, and easily deployable alternative for long-term home monitoring.
SleepNetZero is a zero-shot learning based approach for sleep staging.
This work represents the first known reliable BCG-based sleep staging effort.
- Score: 24.843099813799025
- License:
- Abstract: Sleep monitoring plays a crucial role in maintaining good health, with sleep staging serving as an essential metric in the monitoring process. Traditional methods, utilizing medical sensors like EEG and ECG, can be effective but often present challenges such as unnatural user experience, complex deployment, and high costs. Ballistocardiography~(BCG), a type of piezoelectric sensor signal, offers a non-invasive, user-friendly, and easily deployable alternative for long-term home monitoring. However, reliable BCG-based sleep staging is challenging due to the limited sleep monitoring data available for BCG. A restricted training dataset prevents the model from generalization across populations. Additionally, transferring to BCG faces difficulty ensuring model robustness when migrating from other data sources. To address these issues, we introduce SleepNetZero, a zero-shot learning based approach for sleep staging. To tackle the generalization challenge, we propose a series of BCG feature extraction methods that align BCG components with corresponding respiratory, cardiac, and movement channels in PSG. This allows models to be trained on large-scale PSG datasets that are diverse in population. For the migration challenge, we employ data augmentation techniques, significantly enhancing generalizability. We conducted extensive training and testing on large datasets~(12393 records from 9637 different subjects), achieving an accuracy of 0.803 and a Cohen's Kappa of 0.718. ZeroSleepNet was also deployed in real prototype~(monitoring pads) and tested in actual hospital settings~(265 users), demonstrating an accuracy of 0.697 and a Cohen's Kappa of 0.589. To the best of our knowledge, this work represents the first known reliable BCG-based sleep staging effort and marks a significant step towards in-home health monitoring.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - Thermal Imaging and Radar for Remote Sleep Monitoring of Breathing and Apnea [42.00356210257671]
We show the first comparison of radar and thermal imaging for sleep monitoring.
Our thermal imaging method detects apneas with an accuracy of 0.99, a precision of 0.68, a recall of 0.74, an F1 score of 0.71, and an intra-class correlation of 0.73.
We present a novel proposal for classifying obstructive and central sleep apnea by leveraging a multimodal setup.
arXiv Detail & Related papers (2024-07-16T17:26:50Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - A Personalized Zero-Shot ECG Arrhythmia Monitoring System: From Sparse Representation Based Domain Adaption to Energy Efficient Abnormal Beat Detection for Practical ECG Surveillance [17.29714304835742]
This paper proposes a low-cost and highly accurate ECG-monitoring system intended for personalized early arrhythmia detection for wearable mobile sensors.
In a real-world scenario where the personalized algorithm is embedded in a wearable device, such training data is not available for healthy people with no cardiac disorder history.
We introduce a sparse representation-based domain adaptation technique in order to project other existing users' abnormal and normal signals onto the new user's signal space.
This approach for zero-shot arrhythmia detection achieves an average accuracy level of 98.2% and an F1-Score of 92.8%.
arXiv Detail & Related papers (2022-07-14T17:40:05Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - Using Ballistocardiography for Sleep Stage Classification [2.360019611990601]
Current methods of sleep stage detection are expensive, invasive to a person's sleep, and not practical in a modern home setting.
Ballistocardiography (BCG) is a non-invasive sensing technology that collects information by measuring the ballistic forces generated by the heart.
We propose to implement a sleep stage detection algorithm and compare it against sleep stages extracted from a Fitbit Sense Smart Watch.
arXiv Detail & Related papers (2022-02-02T14:02:48Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Temporal convolutional networks and transformers for classifying the
sleep stage in awake or asleep using pulse oximetry signals [0.0]
We develop a network architecture with the aim of classifying the sleep stage in awake or asleep using only HR signals from a pulse oximeter.
Transformers are able to model the sequence, learning the transition rules between sleep stages.
The overall accuracy, specificity, sensibility, and Cohen's Kappa coefficient were 90.0%, 94.9%, 78.1%, and 0.73.
arXiv Detail & Related papers (2021-01-29T22:58:33Z) - Classification Of Sleep-Wake State In A Ballistocardiogram System Based
On Deep Learning [1.4680035572775534]
We propose a Multi-Head 1D-Convolution based Deep Neural Network to classify sleep-wake state and predict sleep-wake time accurately.
Our method achieves a sleep-wake classification score of 95.5%, which is on par with researches based on the PSG system.
arXiv Detail & Related papers (2020-11-11T03:38:33Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Detection of Obstructive Sleep Apnoea Using Features Extracted from
Segmented Time-Series ECG Signals Using a One Dimensional Convolutional
Neural Network [0.19686770963118383]
The study presents a one-dimensional convolutional neural network (1DCNN) model, designed for the automated detection of obstructive Sleep Apnoea (OSA) captured from single-channel electrocardiogram (ECG) signals.
The model is constructed using convolutional, max pooling layers and a fully connected Multilayer Perceptron (MLP) consisting of a hidden layer and SoftMax output for classification.
This demonstrates the model can identify the presence of Apnoea with a high degree of accuracy.
arXiv Detail & Related papers (2020-02-03T15:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.