論文の概要: Byzantine-Robust Federated Learning: An Overview With Focus on Developing Sybil-based Attacks to Backdoor Augmented Secure Aggregation Protocols
- arxiv url: http://arxiv.org/abs/2410.22680v1
- Date: Wed, 30 Oct 2024 04:20:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:28:09.441721
- Title: Byzantine-Robust Federated Learning: An Overview With Focus on Developing Sybil-based Attacks to Backdoor Augmented Secure Aggregation Protocols
- Title(参考訳): Byzantine-Robust Federated Learning: バックドア拡張セキュアアグリゲーションプロトコルに対するSybilベースのアタックの開発に焦点をあてて
- Authors: Atharv Deshmukh,
- Abstract要約: フェデレートラーニング(FL)パラダイムは、多数のクライアントがプライベートデータ上で機械学習モデルを協調的にトレーニングすることを可能にする。
従来のFLスキームは、悪意のあるバックドアを注入することによってモデルのパフォーマンスを損なおうとするビザンティン攻撃に弱いままである。
本稿では,既存の手法やフレームワークの総括的かつ更新された分類法について,フェデレートラーニングプロトコルのロバストネスの強みと弱みを詳細に分析し,詳細に分析する前に提案する。
我々は,RoFLの脆弱性を利用したSybilベースの2つの新しい攻撃を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Federated Learning (FL) paradigms enable large numbers of clients to collaboratively train Machine Learning models on private data. However, due to their multi-party nature, traditional FL schemes are left vulnerable to Byzantine attacks that attempt to hurt model performance by injecting malicious backdoors. A wide variety of prevention methods have been proposed to protect frameworks from such attacks. This paper provides a exhaustive and updated taxonomy of existing methods and frameworks, before zooming in and conducting an in-depth analysis of the strengths and weaknesses of the Robustness of Federated Learning (RoFL) protocol. From there, we propose two novel Sybil-based attacks that take advantage of vulnerabilities in RoFL. Finally, we conclude with comprehensive proposals for future testing, describe and detail implementation of the proposed attacks, and offer direction for improvements in the RoFL protocol as well as Byzantine-robust frameworks as a whole.
- Abstract(参考訳): フェデレートラーニング(FL)パラダイムは、多数のクライアントがプライベートデータ上で機械学習モデルを協調的にトレーニングすることを可能にする。
しかし、その多党的な性質のため、従来のFLスキームは悪質なバックドアを注入することでモデルのパフォーマンスを損なおうとするビザンツ攻撃に弱いままである。
このような攻撃からフレームワークを保護するため、様々な予防方法が提案されている。
本稿では,既存の手法やフレームワークの総括的かつ更新された分類法を提供し,その後,RoFLプロトコルの強みと弱みを詳細に分析・分析する。
そこで我々は,RoFLの脆弱性を利用する2つの新しいSybilベースの攻撃を提案する。
最後に、将来的なテストのための包括的な提案、提案された攻撃の実装の説明と詳細、そしてRoFLプロトコルとByzantine-Robustフレームワーク全体の改善の方向性を提供する。
関連論文リスト
- Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
レッドチーム、あるいは有害な応答を誘発するプロンプトの特定は、大きな言語モデルの安全なデプロイを保証するための重要なステップである。
新規性と多様性を優先する明確な規則化であっても、既存のアプローチはモード崩壊または効果的な攻撃を発生させることができないことを示す。
我々は,GFlowNetの微調整と二次平滑化フェーズを用いて,多種多様な効果的な攻撃プロンプトを生成するために攻撃モデルを訓練することを提案する。
論文 参考訳(メタデータ) (2024-05-28T19:16:17Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - An Experimental Study of Byzantine-Robust Aggregation Schemes in
Federated Learning [4.627944480085717]
ビザンチン・ロバスト・フェデレーション・ラーニング(Byzantine-robust Federated Learning)は、訓練過程におけるビザンチンの障害を軽減することを目的としている。
ビザンツのクライアントからの悪意のあるアップデートを防御するために、いくつかの堅牢なアグリゲーションスキームが提案されている。
連邦学習における2つの一般的なアルゴリズムを用いて, 異なる攻撃下でのビザンチン・ロバスト・アグリゲーション方式の実験的検討を行った。
論文 参考訳(メタデータ) (2023-02-14T16:36:38Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Challenges and approaches for mitigating byzantine attacks in federated
learning [6.836162272841266]
フェデレーテッド・ラーニング(FL)は、多くの無線エンドユーザーデバイスがデータを使いながらグローバルモデルをトレーニングできる、魅力的な分散学習フレームワークである。
将来性はあるものの、従来の分散ネットワークの難易度の高い脅威であるビザンチン攻撃はFLにも有効であることが判明した。
そこで我々は,これらの防御策を打ち破り,その脅威を実証するための実験を行うために,重み攻撃と呼ばれる新たなビザンチン攻撃法を提案する。
論文 参考訳(メタデータ) (2021-12-29T09:24:05Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
本稿では,第1の汎用フレームワークであるCertifiably Robust Federated Learning (CRFL) を用いて,バックドアに対する堅牢なFLモデルをトレーニングする。
提案手法は, モデルパラメータのクリッピングと平滑化を利用して大域的モデル平滑化を制御する。
論文 参考訳(メタデータ) (2021-06-15T16:50:54Z) - Unleashing the Tiger: Inference Attacks on Split Learning [2.492607582091531]
クライアントのプライベートトレーニングセットの再構築を目的とした汎用的な攻撃戦略を導入する。
悪意のあるサーバは、分散モデルの学習プロセスを積極的にハイジャックすることができる。
我々は、最近提案された防御手法を克服できることを実証する。
論文 参考訳(メタデータ) (2020-12-04T15:41:00Z) - Adversarial Attack and Defense of Structured Prediction Models [58.49290114755019]
本論文では,NLPにおける構造化予測タスクに対する攻撃と防御について検討する。
構造化予測モデルの構造化出力は、入力中の小さな摂動に敏感である。
本稿では,シーケンス・ツー・シーケンス・モデルを用いて,構造化予測モデルへの攻撃を学習する,新規で統一的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-04T15:54:03Z) - Free-rider Attacks on Model Aggregation in Federated Learning [10.312968200748116]
本稿では,反復パラメータアグリゲーションに基づくフェデレーション学習スキームに対するフリーライダー攻撃の理論的および実験的解析について紹介する。
我々は、これらの攻撃が公正な参加者の集約されたモデルに収束することを正式に保証する。
我々は,フェデレートラーニングの現実的応用において,フリーライダー攻撃を避けるための勧告を提供することで結論付けた。
論文 参考訳(メタデータ) (2020-06-21T20:20:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。