論文の概要: LoFLAT: Local Feature Matching using Focused Linear Attention Transformer
- arxiv url: http://arxiv.org/abs/2410.22710v1
- Date: Wed, 30 Oct 2024 05:38:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:27:44.419376
- Title: LoFLAT: Local Feature Matching using Focused Linear Attention Transformer
- Title(参考訳): LoFLAT: 集中型線形注意変換器を用いた局所特徴マッチング
- Authors: Naijian Cao, Renjie He, Yuchao Dai, Mingyi He,
- Abstract要約: We propose the LoFLAT, a novel Local Feature matching using Focused Linear Attention Transformer。
私たちのLoFLATは、Feature extract Module、Feature Transformer Module、Matching Moduleの3つの主要なモジュールで構成されています。
提案した LoFLAT は効率と精度の両方で LoFTR 法より優れている。
- 参考スコア(独自算出の注目度): 36.53651224633837
- License:
- Abstract: Local feature matching is an essential technique in image matching and plays a critical role in a wide range of vision-based applications. However, existing Transformer-based detector-free local feature matching methods encounter challenges due to the quadratic computational complexity of attention mechanisms, especially at high resolutions. However, while existing Transformer-based detector-free local feature matching methods have reduced computational costs using linear attention mechanisms, they still struggle to capture detailed local interactions, which affects the accuracy and robustness of precise local correspondences. In order to enhance representations of attention mechanisms while preserving low computational complexity, we propose the LoFLAT, a novel Local Feature matching using Focused Linear Attention Transformer in this paper. Our LoFLAT consists of three main modules: the Feature Extraction Module, the Feature Transformer Module, and the Matching Module. Specifically, the Feature Extraction Module firstly uses ResNet and a Feature Pyramid Network to extract hierarchical features. The Feature Transformer Module further employs the Focused Linear Attention to refine attention distribution with a focused mapping function and to enhance feature diversity with a depth-wise convolution. Finally, the Matching Module predicts accurate and robust matches through a coarse-to-fine strategy. Extensive experimental evaluations demonstrate that the proposed LoFLAT outperforms the LoFTR method in terms of both efficiency and accuracy.
- Abstract(参考訳): 局所的特徴マッチングは画像マッチングにおいて必須の手法であり、幅広い視覚ベースのアプリケーションにおいて重要な役割を果たす。
しかし、既存のTransformerベースの検出不要な局所特徴マッチング手法は、特に高分解能において、注意機構の2次計算複雑性に起因する問題に遭遇する。
しかし、既存のTransformerベースの検出器レス局所特徴マッチング法は、線形アテンション機構を用いて計算コストを削減しているが、正確な局所通信の精度と堅牢性に影響を与える詳細な局所的相互作用を捉えるのに苦慮している。
本稿では,低計算複雑性を保ちながら注意機構の表現性を高めるために,Focused Linear Attention Transformer を用いた新しい局所特徴マッチング LoFLAT を提案する。
私たちのLoFLATは、Feature extract Module、Feature Transformer Module、Matching Moduleの3つの主要なモジュールで構成されています。
具体的には、フィーチャー抽出モジュールはまずResNetとFeature Pyramid Networkを使用して階層的な特徴を抽出する。
フィーチャートランスフォーマーモジュールはさらに、フォーカスされた線形アテンションを用いて、集中したマッピング機能で注意分布を洗練し、奥行きの畳み込みで特徴の多様性を高める。
最後に、マッチングモジュールは粗い戦略によって正確で堅牢なマッチングを予測する。
大規模な実験により,提案したLoFLATは効率と精度の両方でLoFTR法より優れていることが示された。
関連論文リスト
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
点とボクセルの表現の統合は、LiDARベースの3Dオブジェクト検出においてより一般的になりつつある。
PVAFN(Point-Voxel Attention Fusion Network)と呼ばれる新しい2段3次元物体検出器を提案する。
PVAFNはマルチプール戦略を使用して、マルチスケールとリージョン固有の情報を効果的に統合する。
論文 参考訳(メタデータ) (2024-08-26T19:43:01Z) - PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
本研究は,効率的な特徴集約のための複雑局所的注意機構を導入することで,自己注意機構の二次的複雑さに取り組む。
また,各チャネルの注目重量分布を適応的に調整するパラメータフリーチャネル温度適応機構を導入する。
我々は,PointMTが性能と精度の最適なバランスを維持しつつ,最先端手法に匹敵する性能を実現することを示す。
論文 参考訳(メタデータ) (2024-08-10T10:16:03Z) - Deformable Mixer Transformer with Gating for Multi-Task Learning of
Dense Prediction [126.34551436845133]
CNNとTransformerには独自の利点があり、MTL(Multi-task Learning)の高密度予測に広く使われている。
本稿では,変形可能なCNNと問合せベースのTransformerの長所を共用したMTLモデルを提案する。
論文 参考訳(メタデータ) (2023-08-10T17:37:49Z) - FLatten Transformer: Vision Transformer using Focused Linear Attention [80.61335173752146]
線形注意(linear attention)は、その線形複雑性に対して、はるかに効率的な代替手段を提供する。
現在の線形アテンションアプローチは、大きなパフォーマンス劣化に悩まされるか、追加の計算オーバーヘッドを導入するかのいずれかである。
本研究では,高効率と表現性の両方を実現するために,新しいFocused Linear Attentionモジュールを提案する。
論文 参考訳(メタデータ) (2023-08-01T10:37:12Z) - Exploiting Inductive Bias in Transformer for Point Cloud Classification
and Segmentation [22.587913528540465]
本稿では,新しいインダクティブバイアス支援トランス (IBT) 法を設計し,点間関係を学習する。
局所的特徴学習は相対的位置、注意的特徴プーリングを通じて行われる。
分類タスクと分割タスクにおいて,その優位性を実験的に示す。
論文 参考訳(メタデータ) (2023-04-27T12:17:35Z) - Slide-Transformer: Hierarchical Vision Transformer with Local
Self-Attention [34.26177289099421]
視覚変換器(ViT)の最近の進歩において、自己注意機構が重要な要素となっている。
本稿では,高効率,柔軟性,一般化性を実現するために共通畳み込み演算を利用する新しいローカルアテンションモジュールを提案する。
我々のモジュールは、効率的かつ柔軟な方法で局所的な注意パラダイムを実現する。
論文 参考訳(メタデータ) (2023-04-09T13:37:59Z) - Adaptive Spot-Guided Transformer for Consistent Local Feature Matching [64.30749838423922]
局所的特徴マッチングのための適応スポットガイド変換器(ASTR)を提案する。
ASTRは、統一された粗いアーキテクチャにおける局所的な一貫性とスケールのバリエーションをモデル化する。
論文 参考訳(メタデータ) (2023-03-29T12:28:01Z) - Improving Transformer-based Image Matching by Cascaded Capturing
Spatially Informative Keypoints [44.90917854990362]
変換器を用いたカスケードマッチングモデル -- Cascade Feature Matching TRansformer (CasMTR) を提案する。
我々は、信頼性マップを通じてキーポイントをフィルタリングするために、単純で効果的な非最大抑圧(NMS)後処理を使用する。
CasMTRは、室内および屋外のポーズ推定および視覚的位置推定において最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-03-06T04:32:34Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - LCTR: On Awakening the Local Continuity of Transformer for Weakly
Supervised Object Localization [38.376238216214524]
弱教師付きオブジェクトローカライゼーション(WSOL)は、画像レベルのラベルだけでオブジェクトローカライザを学習することを目的としている。
本稿では,グローバルな特徴の局所認識能力を高めることを目的とした,LCTRと呼ばれるトランスフォーマー上に構築された新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-10T01:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。