Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
- URL: http://arxiv.org/abs/2410.22729v2
- Date: Mon, 03 Mar 2025 00:23:28 GMT
- Title: Identifying Drift, Diffusion, and Causal Structure from Temporal Snapshots
- Authors: Vincent Guan, Joseph Janssen, Hossein Rahmani, Andrew Warren, Stephen Zhang, Elina Robeva, Geoffrey Schiebinger,
- Abstract summary: APPEX is an iterative algorithm designed to estimate the drift, diffusion, and causal graph of an additive noise SDE, solely from temporal marginals.<n>We show that APPEX iteratively decreases Kullback-Leibler divergence to the true solution, and demonstrate its effectiveness on simulated data from linear additive noise SDEs.
- Score: 10.018568337210876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic differential equations (SDEs) are a fundamental tool for modelling dynamic processes, including gene regulatory networks (GRNs), contaminant transport, financial markets, and image generation. However, learning the underlying SDE from data is a challenging task, especially if individual trajectories are not observable. Motivated by burgeoning research in single-cell datasets, we present the first comprehensive approach for jointly identifying the drift and diffusion of an SDE from its temporal marginals. Assuming linear drift and additive diffusion, we prove that these parameters are identifiable from marginals if and only if the initial distribution lacks any generalized rotational symmetries. We further prove that the causal graph of any SDE with additive diffusion can be recovered from the SDE parameters. To complement this theory, we adapt entropy-regularized optimal transport to handle anisotropic diffusion, and introduce APPEX (Alternating Projection Parameter Estimation from $X_0$), an iterative algorithm designed to estimate the drift, diffusion, and causal graph of an additive noise SDE, solely from temporal marginals. We show that APPEX iteratively decreases Kullback-Leibler divergence to the true solution, and demonstrate its effectiveness on simulated data from linear additive noise SDEs.
Related papers
- Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space.
Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries.
Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability.
arXiv Detail & Related papers (2025-03-28T16:44:28Z) - Foundation Inference Models for Stochastic Differential Equations: A Transformer-based Approach for Zero-shot Function Estimation [3.005912045854039]
We introduce FIM-SDE (Foundation Inference Model for SDEs), a transformer-based recognition model capable of performing accurate zero-shot estimation of the drift and diffusion functions of SDEs.
We demonstrate that one and the same (pretrained) FIM-SDE achieves robust zero-shot function estimation across a wide range of synthetic and real-world processes.
arXiv Detail & Related papers (2025-02-26T11:04:02Z) - Diffusion-PINN Sampler [6.656265182236135]
We introduce a novel diffusion-based sampling algorithm that estimates the drift term by solving the governing partial differential equation of the log-density of the underlying SDE marginals via physics-informed neural networks (PINN)
We prove that the error of log-density approximation can be controlled by the PINN residual loss, enabling us to establish convergence guarantees of DPS.
arXiv Detail & Related papers (2024-10-20T09:02:16Z) - Stability and Generalizability in SDE Diffusion Models with Measure-Preserving Dynamics [11.919291977879801]
Inverse problems describe the process of estimating the causal factors from a set of measurements or data.
Diffusion models have shown promise as potent generative tools for solving inverse problems.
arXiv Detail & Related papers (2024-06-19T15:55:12Z) - AdjointDEIS: Efficient Gradients for Diffusion Models [2.0795007613453445]
We show that continuous adjoint equations for diffusion SDEs actually simplify to a simple ODE.
We also demonstrate the effectiveness of AdjointDEIS for guided generation with an adversarial attack in the form of the face morphing problem.
arXiv Detail & Related papers (2024-05-23T19:51:33Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Risk-Sensitive Diffusion: Robustly Optimizing Diffusion Models with Noisy Samples [58.68233326265417]
Non-image data are prevalent in real applications and tend to be noisy.
Risk-sensitive SDE is a type of differential equation (SDE) parameterized by the risk vector.
We conduct systematic studies for both Gaussian and non-Gaussian noise distributions.
arXiv Detail & Related papers (2024-02-03T08:41:51Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Latent SDEs on Homogeneous Spaces [9.361372513858043]
We consider the problem of variational Bayesian inference in a latent variable model where a (possibly complex) observed geometric process is governed by the solution of a latent differential equation (SDE)
Experiments demonstrate that a latent SDE of the proposed type can be learned efficiently by means of an existing one-step Euler-Maruyama scheme.
arXiv Detail & Related papers (2023-06-28T14:18:52Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
We study the problem mathematically for two limiting scenarios: the zero diffusion (ODE) case and the large diffusion case.
Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model with a large diffusion coefficient.
arXiv Detail & Related papers (2023-06-03T09:27:15Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Stochastic Normalizing Flows [52.92110730286403]
We introduce normalizing flows for maximum likelihood estimation and variational inference (VI) using differential equations (SDEs)
Using the theory of rough paths, the underlying Brownian motion is treated as a latent variable and approximated, enabling efficient training of neural SDEs.
These SDEs can be used for constructing efficient chains to sample from the underlying distribution of a given dataset.
arXiv Detail & Related papers (2020-02-21T20:47:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.