Probing quantum anomalous heat flow using mid-circuit measurements
- URL: http://arxiv.org/abs/2410.22900v1
- Date: Wed, 30 Oct 2024 10:58:47 GMT
- Title: Probing quantum anomalous heat flow using mid-circuit measurements
- Authors: Aabhaas Vineet Mallik, Loris Maria Cangemi, Amikam Levy, Emanuele G. Dalla Torre,
- Abstract summary: This work presents the first observation of quantum anomalous heat flow between two qubits.
Using mid-circuit measurements, we designed quantum circuits that violate the semi-classical heat flow bound.
- Score: 0.0
- License:
- Abstract: Gate-based quantum computers are an innovative tool for experimentally studying the core principles of quantum mechanics. This work presents the first observation of quantum anomalous heat flow between two qubits and investigates the role of mid-circuit measurements in this context. Using mid-circuit measurements, we designed quantum circuits that violate the semi-classical heat flow bound, witnessing negativities in the underlying Kirkwood-Dirac quasiprobability distribution, which indicates the presence of quantum correlations between the subsystems. Mid-circuit measurements, crucial for probing qubits during the experiment, enabled these observations but also introduced disturbances, such as energy leakage, leading to deviations from theoretical predictions. We modeled these noise effects, providing insight into the limitations of current mid-circuit measurement techniques.
Related papers
- Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Detecting and Eliminating Quantum Noise of Quantum Measurements [3.871198861387443]
We first detect and then eliminate quantum noise so that the classical noise assumption is satisfied.
We demonstrate the feasibility of the two-stage procedure numerically on Baidu Quantum Platform.
Remarkably, the results show that quantum noise in measurement devices is significantly suppressed, and the quantum accuracy is substantially improved.
arXiv Detail & Related papers (2022-06-28T03:58:10Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Heat transport and rectification via quantum statistical and coherence
asymmetries [0.0]
We show that heat rectification is possible even with symmetric medium-bath couplings if the two baths differ in quantum statistics or coherence.
Our results can be significant for heat management in hybrid open quantum systems or solid-state thermal circuits.
arXiv Detail & Related papers (2022-04-14T15:59:03Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Continuous measurements for control of superconducting quantum circuits [0.0]
We introduce the concept of quantum feedback in the context of circuit QED.
We discuss several experiments and see how they elucidate the concepts of continuous measurements and feedback.
We conclude with an overview of coherent feedback, with application to fault-tolerant error correction.
arXiv Detail & Related papers (2020-09-15T18:00:18Z) - Quantifying the quantum heat contribution from a driven superconducting
circuit [0.0]
We propose a two-reservoir setup to detect the quantum component in the heat flow exchanged by a coherently driven atom with its thermal environment.
tuning the driving parameters switches on and off the quantum and classical contributions to the heat flows, enabling their independent characterization.
arXiv Detail & Related papers (2020-01-28T14:38:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.