Scoring Rules and Calibration for Imprecise Probabilities
- URL: http://arxiv.org/abs/2410.23001v1
- Date: Wed, 30 Oct 2024 13:29:47 GMT
- Title: Scoring Rules and Calibration for Imprecise Probabilities
- Authors: Christian Fröhlich, Robert C. Williamson,
- Abstract summary: We argue that proper scoring rules and calibration serve two distinct goals, which are aligned in the precise case, but intriguingly are not necessarily aligned in the case.
We demonstrate the theoretical insights in machine learning practice, in particular we illustrate subtle pitfalls relating to the choice of loss function in distributional robustness.
- Score: 7.289672463326423
- License:
- Abstract: What does it mean to say that, for example, the probability for rain tomorrow is between 20% and 30%? The theory for the evaluation of precise probabilistic forecasts is well-developed and is grounded in the key concepts of proper scoring rules and calibration. For the case of imprecise probabilistic forecasts (sets of probabilities), such theory is still lacking. In this work, we therefore generalize proper scoring rules and calibration to the imprecise case. We develop these concepts as relative to data models and decision problems. As a consequence, the imprecision is embedded in a clear context. We establish a close link to the paradigm of (group) distributional robustness and in doing so provide new insights for it. We argue that proper scoring rules and calibration serve two distinct goals, which are aligned in the precise case, but intriguingly are not necessarily aligned in the imprecise case. The concept of decision-theoretic entropy plays a key role for both goals. Finally, we demonstrate the theoretical insights in machine learning practice, in particular we illustrate subtle pitfalls relating to the choice of loss function in distributional robustness.
Related papers
- Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence [2.2359781747539396]
Deep networks often suffer from overconfidence and misaligned predictive distributions.
We introduce a metric, Conditional Congruence Error (CCE), that uses conditional kernel mean embeddings to estimate the distance between the learned predictive distribution and the empirical, conditional distribution in a dataset.
We show that using to measure congruence 1) accurately quantifies misalignment between distributions when the data generating process is known, 2) effectively scales to real-world, high dimensional image regression tasks, and 3) can be used to gauge model reliability on unseen instances.
arXiv Detail & Related papers (2024-05-20T23:30:07Z) - Quantifying Aleatoric and Epistemic Uncertainty with Proper Scoring Rules [19.221081896134567]
Uncertainty representation and quantification are paramount in machine learning.
We propose measures for the quantification of aleatoric and (epistemic) uncertainty based on proper scoring rules.
arXiv Detail & Related papers (2024-04-18T14:20:19Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
This work aims to assess how well a model performs under distribution shifts without using labels.
We use the nuclear norm that has been shown to be effective in characterizing both properties.
We show that the nuclear norm is more accurate and robust in accuracy than existing methods.
arXiv Detail & Related papers (2023-02-02T13:30:48Z) - VisFIS: Visual Feature Importance Supervision with
Right-for-the-Right-Reason Objectives [84.48039784446166]
We show that model FI supervision can meaningfully improve VQA model accuracy as well as performance on several Right-for-the-Right-Reason metrics.
Our best performing method, Visual Feature Importance Supervision (VisFIS), outperforms strong baselines on benchmark VQA datasets.
Predictions are more accurate when explanations are plausible and faithful, and not when they are plausible but not faithful.
arXiv Detail & Related papers (2022-06-22T17:02:01Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Don't Just Blame Over-parametrization for Over-confidence: Theoretical
Analysis of Calibration in Binary Classification [58.03725169462616]
We show theoretically that over-parametrization is not the only reason for over-confidence.
We prove that logistic regression is inherently over-confident, in the realizable, under-parametrized setting.
Perhaps surprisingly, we also show that over-confidence is not always the case.
arXiv Detail & Related papers (2021-02-15T21:38:09Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
We study three notions of uncertainty quantification -- calibration, confidence intervals and prediction sets -- for binary classification in the distribution-free setting.
We derive confidence intervals for binned probabilities for both fixed-width and uniform-mass binning.
As a consequence of our 'tripod' theorems, these confidence intervals for binned probabilities lead to distribution-free calibration.
arXiv Detail & Related papers (2020-06-18T14:17:29Z) - Estimation of Accurate and Calibrated Uncertainties in Deterministic
models [0.8702432681310401]
We devise a method to transform a deterministic prediction into a probabilistic one.
We show that for doing so, one has to compromise between the accuracy and the reliability (calibration) of such a model.
We show several examples both with synthetic data, where the underlying hidden noise can accurately be recovered, and with large real-world datasets.
arXiv Detail & Related papers (2020-03-11T04:02:56Z) - Calibrated Prediction with Covariate Shift via Unsupervised Domain
Adaptation [25.97333838935589]
Uncertainty estimates are an important tool for helping autonomous agents or human decision makers understand and leverage predictive models.
Existing algorithms can overestimate certainty, possibly yielding a false sense of confidence in the predictive model.
arXiv Detail & Related papers (2020-02-29T20:31:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.