論文の概要: Offline Reinforcement Learning and Sequence Modeling for Downlink Link Adaptation
- arxiv url: http://arxiv.org/abs/2410.23031v1
- Date: Wed, 30 Oct 2024 14:01:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:23:47.043579
- Title: Offline Reinforcement Learning and Sequence Modeling for Downlink Link Adaptation
- Title(参考訳): ダウンリンクリンク適応のためのオフライン強化学習とシーケンスモデリング
- Authors: Samuele Peri, Alessio Russo, Gabor Fodor, Pablo Soldati,
- Abstract要約: リンク適応は、モビリティ、高速なフェージング、不完全なチャネル品質情報の存在において難しい課題である。
本稿では,バッチ制約付きQ-ラーニング,保守的Q-ラーニング,意思決定変換に基づく3つのLA設計を提案する。
オフラインRLアルゴリズムは、データが適切な行動ポリシーで収集される場合、最先端のオンラインRLメソッドのパフォーマンスを達成することができる。
- 参考スコア(独自算出の注目度): 3.687363450234871
- License:
- Abstract: Contemporary radio access networks employ link adaption (LA) algorithms to optimize the modulation and coding schemes to adapt to the prevailing propagation conditions and are near-optimal in terms of the achieved spectral efficiency. LA is a challenging task in the presence of mobility, fast fading, and imperfect channel quality information and limited knowledge of the receiver characteristics at the transmitter, which render model-based LA algorithms complex and suboptimal. Model-based LA is especially difficult as connected user equipment devices become increasingly heterogeneous in terms of receiver capabilities, antenna configurations and hardware characteristics. Recognizing these difficulties, previous works have proposed reinforcement learning (RL) for LA, which faces deployment difficulties due to their potential negative impacts on live performance. To address this challenge, this paper considers offline RL to learn LA policies from data acquired in live networks with minimal or no intrusive effects on the network operation. We propose three LA designs based on batch-constrained deep Q-learning, conservative Q-learning, and decision transformers, showing that offline RL algorithms can achieve performance of state-of-the-art online RL methods when data is collected with a proper behavioral policy.
- Abstract(参考訳): 現代の無線アクセスネットワークでは、変調と符号化スキームを最適化するためにリンク適応(LA)アルゴリズムが採用されており、スペクトル効率の点でほぼ最適である。
LAは、モデルベースのLAアルゴリズムを複雑かつ最適にレンダリングする送信機において、モビリティ、高速なフェード、不完全なチャネル品質情報、受信機特性の限られた知識の存在において、困難なタスクである。
モデルベースLAは、レシーバ機能、アンテナ構成、ハードウェア特性といった点において、接続されたユーザ機器デバイスがますます不均一になるため、特に困難である。
これらの難しさを認識した従来の研究は、ライブパフォーマンスに悪影響を及ぼす可能性があるため、運用上の困難に直面しているLAのための強化学習(RL)を提案してきた。
この課題に対処するため,本論文では,ライブネットワークで取得したデータからLAポリシーを学習するためのオフラインRLについて検討する。
本稿では,バッチ制約の深いQ-ラーニング,保守的なQ-ラーニング,意思決定変換をベースとした3つのLA設計を提案する。
関連論文リスト
- Resilient UAV Trajectory Planning via Few-Shot Meta-Offline Reinforcement Learning [5.771885923067511]
本研究は、オフラインRLとモデルに依存しないメタ学習を組み合わせた、新しい、レジリエントで、少数ショットのメタオフラインRLアルゴリズムを提案する。
提案する数ショットメタオフラインRLアルゴリズムは,ベースライン方式よりも高速に収束することを示す。
オフラインデータセットを使用して最適な共同AoIと送信パワーを達成できる唯一のアルゴリズムである。
論文 参考訳(メタデータ) (2025-02-03T11:39:12Z) - Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormerは構造ベースの連続トランスフォーマーモデルであり、メタポリシックネットワークを介して、以前のポリシーを適応的に構成する。
実験の結果,CompoFormerは従来の継続学習法(CL)よりも優れており,特にタスクシーケンスが長いことが判明した。
論文 参考訳(メタデータ) (2024-11-18T08:20:21Z) - Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning [62.984693936073974]
価値に基づく強化学習は、幅広いマルチターン問題に対する効果的なポリシーを学ぶことができる。
現在の値ベースのRL法は、特に大規模な言語モデルの設定にスケールすることが困難であることが証明されている。
本稿では,これらの欠点に対処する新しいオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-07T21:36:52Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - Closed-form congestion control via deep symbolic regression [1.5961908901525192]
強化学習(RL)アルゴリズムは、超低レイテンシおよび高スループットシナリオにおける課題を処理することができる。
実際のデプロイメントにおけるニューラルネットワークモデルの採用は、リアルタイムの推論と解釈可能性に関して、依然としていくつかの課題を提起している。
本稿では,性能と一般化能力を維持しつつ,このような課題に対処する方法論を提案する。
論文 参考訳(メタデータ) (2024-03-28T14:31:37Z) - Advancing RAN Slicing with Offline Reinforcement Learning [15.259182716723496]
本稿では,RANスライシング問題を解決するためにオフライン強化学習を導入する。
オフラインRLが準最適データセットからほぼ最適ポリシーを効果的に学習する方法を示す。
また、各種サービスレベルの要件に適合するオフラインRLの有効性の実証的証拠も提示する。
論文 参考訳(メタデータ) (2023-12-16T22:09:50Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
我々はENsemble-based Offline-To-Online (ENOTO) RLという新しいフレームワークを提案する。
Q-networksの数を増やすことで、オフラインの事前トレーニングとオンラインの微調整を、パフォーマンスを低下させることなくシームレスに橋渡しします。
実験により,ENOTOは既存のオフラインRL手法のトレーニング安定性,学習効率,最終性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-06-12T05:10:10Z) - Learning to Control Autonomous Fleets from Observation via Offline
Reinforcement Learning [3.9121134770873733]
オフライン強化学習のレンズによる自律移動システム制御の形式化を提案する。
オフラインRLは、経済的にクリティカルなシステムにおいて、RLベースのソリューションを適用する上で有望なパラダイムであることを示す。
論文 参考訳(メタデータ) (2023-02-28T18:31:07Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
オフラインモデルに基づく強化学習では、歴史的収集データから動的モデルを学び、学習モデルと固定データセットを用いてポリシー学習を行う。
提案手法は,本手法が期待するリターンを最小限に抑えるための,反復的なオフラインMBRLフレームワークを開発する。
提案する統一型モデル政治学習フレームワークにより、我々は、広範囲の連続制御オフライン強化学習データセット上での競合性能を実現する。
論文 参考訳(メタデータ) (2022-10-12T04:58:51Z) - MOORe: Model-based Offline-to-Online Reinforcement Learning [26.10368749930102]
モデルに基づくオフライン強化学習(MOORe)アルゴリズムを提案する。
実験結果から,本アルゴリズムはオフラインからオンラインへの移行を円滑に行い,サンプル効率のよいオンライン適応を可能にした。
論文 参考訳(メタデータ) (2022-01-25T03:14:57Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
適応行動優先型オフラインモデルに基づくRL(Adaptive Behavioral Priors:MABE)を導入する。
MABEは、ドメイン内の一般化をサポートする動的モデルと、ドメイン間の一般化をサポートする振る舞いの事前が相補的であることの発見に基づいている。
クロスドメインの一般化を必要とする実験では、MABEが先行手法より優れていることが判明した。
論文 参考訳(メタデータ) (2021-06-16T20:48:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。