論文の概要: Offline and Distributional Reinforcement Learning for Wireless Communications
- arxiv url: http://arxiv.org/abs/2504.03804v1
- Date: Fri, 04 Apr 2025 09:24:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:08:52.091877
- Title: Offline and Distributional Reinforcement Learning for Wireless Communications
- Title(参考訳): 無線通信におけるオフライン・分散強化学習
- Authors: Eslam Eldeeb, Hirley Alves,
- Abstract要約: 従来のオンライン強化学習(RL)とディープRL手法は、リアルタイム無線ネットワークにおいて制限に直面している。
これらの課題を克服できる2つの高度なRL技術である、オフラインおよび分散RLに焦点を当てる。
本稿では,無線通信アプリケーションのためのオフラインと分散RLを組み合わせた新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.771885923067511
- License:
- Abstract: The rapid growth of heterogeneous and massive wireless connectivity in 6G networks demands intelligent solutions to ensure scalability, reliability, privacy, ultra-low latency, and effective control. Although artificial intelligence (AI) and machine learning (ML) have demonstrated their potential in this domain, traditional online reinforcement learning (RL) and deep RL methods face limitations in real-time wireless networks. For instance, these methods rely on online interaction with the environment, which might be unfeasible, costly, or unsafe. In addition, they cannot handle the inherent uncertainties in real-time wireless applications. We focus on offline and distributional RL, two advanced RL techniques that can overcome these challenges by training on static datasets and accounting for network uncertainties. We introduce a novel framework that combines offline and distributional RL for wireless communication applications. Through case studies on unmanned aerial vehicle (UAV) trajectory optimization and radio resource management (RRM), we demonstrate that our proposed Conservative Quantile Regression (CQR) algorithm outperforms conventional RL approaches regarding convergence speed and risk management. Finally, we discuss open challenges and potential future directions for applying these techniques in 6G networks, paving the way for safer and more efficient real-time wireless systems.
- Abstract(参考訳): 6Gネットワークにおける不均一で大規模な無線接続の急速な成長は、スケーラビリティ、信頼性、プライバシ、超低レイテンシ、効率的な制御を保証するインテリジェントなソリューションを要求する。
人工知能(AI)と機械学習(ML)はこの分野でその可能性を実証しているが、従来のオンライン強化学習(RL)とディープRL手法はリアルタイム無線ネットワークにおいて制限に直面している。
例えば、これらの手法は環境とのオンラインインタラクションに依存しています。
加えて、リアルタイム無線アプリケーションにおける固有の不確実性には対処できない。
静的データセットのトレーニングとネットワークの不確実性を考慮し、これらの課題を克服する2つの高度なRL技術である、オフラインおよび分散RLに焦点を当てる。
本稿では,無線通信アプリケーションのためのオフラインと分散RLを組み合わせた新しいフレームワークを提案する。
無人航空機(UAV)軌道最適化と無線資源管理(RRM)のケーススタディを通じて,提案手法が従来のRL手法よりもコンバージェンス速度やリスク管理に優れていることを示す。
最後に、これらの技術を6Gネットワークに適用するためのオープンな課題と将来的な方向性について論じ、より安全で効率的なリアルタイム無線システムを実現する。
関連論文リスト
- Resilient UAV Trajectory Planning via Few-Shot Meta-Offline Reinforcement Learning [5.771885923067511]
本研究は、オフラインRLとモデルに依存しないメタ学習を組み合わせた、新しい、レジリエントで、少数ショットのメタオフラインRLアルゴリズムを提案する。
提案する数ショットメタオフラインRLアルゴリズムは,ベースライン方式よりも高速に収束することを示す。
オフラインデータセットを使用して最適な共同AoIと送信パワーを達成できる唯一のアルゴリズムである。
論文 参考訳(メタデータ) (2025-02-03T11:39:12Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - Conservative and Risk-Aware Offline Multi-Agent Reinforcement Learning [33.48496141312585]
強化学習(Reinforcement Learning, RL)は、次世代無線ネットワークのような複雑なエンジニアリングシステムの制御と最適化に広く採用されている。
RLを採用する上で重要な課題は、物理的環境への直接アクセスの必要性である。
本稿では、分散RLと保守的Q-ラーニングを統合したオフラインMARL方式を提案する。
論文 参考訳(メタデータ) (2024-02-13T12:49:22Z) - Advancing RAN Slicing with Offline Reinforcement Learning [15.259182716723496]
本稿では,RANスライシング問題を解決するためにオフライン強化学習を導入する。
オフラインRLが準最適データセットからほぼ最適ポリシーを効果的に学習する方法を示す。
また、各種サービスレベルの要件に適合するオフラインRLの有効性の実証的証拠も提示する。
論文 参考訳(メタデータ) (2023-12-16T22:09:50Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
モバイルエッジコンピューティング(MEC)は、第5世代(5G)ネットワークなどにおける計算と遅延に敏感なタスクのための新しいパラダイムであると考えた。
本稿では、フリー対応RLに関する総合的な研究レビューと、開発のための洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T10:02:54Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - Cognitive Radio Network Throughput Maximization with Deep Reinforcement
Learning [58.44609538048923]
RF-CRN(Radio Frequency powered Cognitive Radio Networks)は、IoT(Internet of Things)などの最新のネットワークの目と耳である可能性が高い。
自律的と考えるには、RF駆動のネットワークエンティティは、ネットワーク環境の不確実性の下でネットワークスループットを最大化するために、ローカルで決定する必要がある。
本稿では,この欠点を克服し,無線ゲートウェイがネットワークスループットを最大化するための最適なポリシーを導出できるように,深層強化学習を提案する。
論文 参考訳(メタデータ) (2020-07-07T01:49:07Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。