Multi-Programming Language Sandbox for LLMs
- URL: http://arxiv.org/abs/2410.23074v2
- Date: Tue, 05 Nov 2024 13:26:07 GMT
- Title: Multi-Programming Language Sandbox for LLMs
- Authors: Shihan Dou, Jiazheng Zhang, Jianxiang Zang, Yunbo Tao, Weikang Zhou, Haoxiang Jia, Shichun Liu, Yuming Yang, Zhiheng Xi, Shenxi Wu, Shaoqing Zhang, Muling Wu, Changze Lv, Limao Xiong, Wenyu Zhan, Lin Zhang, Rongxiang Weng, Jingang Wang, Xunliang Cai, Yueming Wu, Ming Wen, Rui Zheng, Tao Ji, Yixin Cao, Tao Gui, Xipeng Qiu, Qi Zhang, Xuanjing Huang,
- Abstract summary: out-of-the-box multi-programming language sandbox designed to provide unified and comprehensive feedback from compiler and analysis tools for Large Language Models (LLMs)
It can automatically identify the programming language of the code, compiling and executing it within an isolated sub-sandbox to ensure safety and stability.
- Score: 78.99934332554963
- License:
- Abstract: We introduce MPLSandbox, an out-of-the-box multi-programming language sandbox designed to provide unified and comprehensive feedback from compiler and analysis tools for Large Language Models (LLMs). It can automatically identify the programming language of the code, compiling and executing it within an isolated sub-sandbox to ensure safety and stability. In addition, MPLSandbox also integrates both traditional and LLM-based code analysis tools, providing a comprehensive analysis of generated code. MPLSandbox can be effortlessly integrated into the training and deployment of LLMs to improve the quality and correctness of their generated code. It also helps researchers streamline their workflows for various LLM-based code-related tasks, reducing the development cost. To validate the effectiveness of MPLSandbox, we integrate it into training and deployment approaches, and also employ it to optimize workflows for a wide range of real-world code-related tasks. Our goal is to enhance researcher productivity on LLM-based code-related tasks by simplifying and automating workflows through delegation to MPLSandbox.
Related papers
- Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
We present codellm-devkit (hereafter, CLDK'), an open-source library that significantly simplifies the process of performing program analysis.
CLDK offers developers an intuitive and user-friendly interface, making it incredibly easy to provide rich program analysis context to code LLMs.
arXiv Detail & Related papers (2024-10-16T20:05:59Z) - EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation [8.009881267479189]
Large Language Models (LLMs) have seen increasing use in various software development tasks, especially in code generation.
We propose an alternative approach named Evolutionary Prompt Engineering for Code (EPiC) to evolve the original prompts toward better ones that produce high-quality code.
Our evaluation against state-of-the-art (SOTA) LLM-based code generation models shows that EPiC outperforms all the baselines in terms of cost-effectiveness.
arXiv Detail & Related papers (2024-08-20T21:15:36Z) - SoupLM: Model Integration in Large Language and Multi-Modal Models [51.12227693121004]
Training large language models (LLMs) requires significant computing resources.
Existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks.
arXiv Detail & Related papers (2024-07-11T05:38:15Z) - Large Language Models as Software Components: A Taxonomy for LLM-Integrated Applications [0.0]
Large Language Models (LLMs) have become widely adopted recently. Research explores their use both as autonomous agents and as tools for software engineering.
LLMs-integrated applications, on the other hand, are software systems that leverage an LLM to perform tasks that would otherwise be impossible or require significant coding effort.
This study provides a taxonomy for LLM-integrated applications, offering a framework for analyzing and describing these systems.
arXiv Detail & Related papers (2024-06-13T21:32:56Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
This paper presents a simplified approach to integrating large language models (LLMs) into programming.
Our approach utilizes the semantic richness in existing programs to automatically translate between the traditional programming languages and the natural language.
We present a fully functional and production-grade implementation for our approach and compare it to SOTA LLM software development tools.
arXiv Detail & Related papers (2024-05-14T21:12:01Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
This paper introduces the notion of knowledge fusion for large language models (LLMs)
We externalize their collective knowledge and unique strengths, thereby elevating the capabilities of the target model beyond those of any individual source LLM.
Our findings confirm that the fusion of LLMs can improve the performance of the target model across a range of capabilities such as reasoning, commonsense, and code generation.
arXiv Detail & Related papers (2024-01-19T05:02:46Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.