AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives
- URL: http://arxiv.org/abs/2410.23084v1
- Date: Wed, 30 Oct 2024 14:59:57 GMT
- Title: AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives
- Authors: Xiangcen Wu, Yipei Wang, Qianye Yang, Natasha Thorley, Shonit Punwani, Veeru Kasivisvanathan, Ester Bonmati, Yipeng Hu,
- Abstract summary: We propose to develop deep learning models that improve the overall cancer diagnostic accuracy.
We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases.
Based on the presented experiments from two clinical data sets, we show that the proposed strategy can improve the diagnostic accuracy.
- Score: 5.75804178993065
- License:
- Abstract: Prostate cancer diagnosis through MR imaging have currently relied on radiologists' interpretation, whilst modern AI-based methods have been developed to detect clinically significant cancers independent of radiologists. In this study, we propose to develop deep learning models that improve the overall cancer diagnostic accuracy, by classifying radiologist-identified patients or lesions (i.e. radiologist-positives), as opposed to the existing models that are trained to discriminate over all patients. We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases, at levels of lesions, Barzell-zones and patients. Based on the presented experiments from two clinical data sets, consisting of histopathology-labelled MR images from more than 800 and 500 patients in the respective UCLA and UCL PROMIS studies, we show that the proposed strategy can improve the diagnostic accuracy, by augmenting the radiologist reading of the MR imaging. Among varying definition of clinical significance, the proposed strategy, for example, achieved a specificity of 44.1% (with AI assistance) from 36.3% (by radiologists alone), at a controlled sensitivity of 80.0% on the publicly available UCLA data set. This provides measurable clinical values in a range of applications such as reducing unnecessary biopsies, lowering cost in cancer screening and quantifying risk in therapies.
Related papers
- Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Radiomics Boosts Deep Learning Model for IPMN Classification [3.4659499358648675]
Intraductal Papillary Mucinous Neoplasm (IPMN) cysts are pre-malignant pancreas lesions, and they can progress into pancreatic cancer.
In this study, we propose a novel computer-aided diagnosis pipeline for IPMN risk classification from MRI scans.
arXiv Detail & Related papers (2023-09-11T22:41:52Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
Methods: A search of PubMed, Scopus, Web of Science, CENTRAL, and WHO-ICTRP was conducted.
Risk of bias was assessed using PROBAST.
There were 80 models of interest, including 37 diagnostic models, 22 prognostic models, and 21 models with other diagnostically relevant outcomes.
All models were found to be at high or unclear risk of bias overall, with most research having a high risk of bias in the analysis.
arXiv Detail & Related papers (2023-03-31T12:26:29Z) - A new methodology to predict the oncotype scores based on
clinico-pathological data with similar tumor profiles [0.0]
The Oncotype DX (ODX) test is a commercially available molecular test for breast cancer.
The aim of this study is to propose a novel methodology to assist physicians in their decision-making.
arXiv Detail & Related papers (2023-03-13T10:08:13Z) - Mixed Supervision of Histopathology Improves Prostate Cancer
Classification from MRI [0.9395521049323435]
Non-invasive prostate cancer detection from MRI has the potential to revolutionize patient care.
We present an MRI-based deep learning method for predicting clinically significant prostate cancer applicable to a patient population.
arXiv Detail & Related papers (2022-12-13T02:34:57Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Enhancing Early Lung Cancer Detection on Chest Radiographs with
AI-assistance: A Multi-Reader Study [0.08384911110020841]
The present study evaluated the impact of a commercially available explainable AI algorithm in augmenting the ability of clinicians to identify lung cancer on chest X-rays (CXR)
The use of the AI algorithm by clinicians led to an improved overall performance for lung tumour detection.
arXiv Detail & Related papers (2022-08-31T09:46:21Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.