Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients
- URL: http://arxiv.org/abs/2211.04180v2
- Date: Thu, 30 Mar 2023 08:07:01 GMT
- Title: Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients
- Authors: Alexander Ziller, Ayhan Can Erdur, Friederike Jungmann, Daniel
Rueckert, Rickmer Braren, Georgios Kaissis
- Abstract summary: We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
- Score: 60.78505216352878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prediction of pancreatic ductal adenocarcinoma therapy response is a
clinically challenging and important task in this high-mortality tumour entity.
The training of neural networks able to tackle this challenge is impeded by a
lack of large datasets and the difficult anatomical localisation of the
pancreas. Here, we propose a hybrid deep neural network pipeline to predict
tumour response to initial chemotherapy which is based on the Response
Evaluation Criteria in Solid Tumors (RECIST) score, a standardised method for
cancer response evaluation by clinicians as well as tumour markers, and
clinical evaluation of the patients. We leverage a combination of
representation transfer from segmentation to classification, as well as
localisation and representation learning. Our approach yields a remarkably
data-efficient method able to predict treatment response with a ROC-AUC of
63.7% using only 477 datasets in total.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
We propose to develop deep learning models that improve the overall cancer diagnostic accuracy.
We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases.
Based on the presented experiments from two clinical data sets, we show that the proposed strategy can improve the diagnostic accuracy.
arXiv Detail & Related papers (2024-10-30T14:59:57Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options.
This research proposes a workflow and deep learning-based segmentation models to automatically assess tumor-vessel involvement.
arXiv Detail & Related papers (2023-10-01T10:39:38Z) - Non-Linear Self Augmentation Deep Pipeline for Cancer Treatment outcome
Prediction [7.455416595124159]
Authors present an innovative strategy that harnesses a non-linear cellular architecture in conjunction with a deep downstream classifier.
This approach aims to carefully select and enhance 2D features extracted from chest-abdomen CT images, thereby improving the prediction of treatment outcomes.
The proposed pipeline has been meticulously designed to seamlessly integrate with an advanced embedded Point of Care system.
arXiv Detail & Related papers (2023-07-26T15:01:26Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Recurrence-free Survival Prediction under the Guidance of Automatic
Gross Tumor Volume Segmentation for Head and Neck Cancers [8.598790229614071]
We developed an automated primary tumor (GTVp) and lymph nodes (GTVn) segmentation method.
We extracted radiomics features from the segmented tumor volume and constructed a multi-modality tumor recurrence-free survival (RFS) prediction model.
arXiv Detail & Related papers (2022-09-22T18:44:57Z) - Stratification of carotid atheromatous plaque using interpretable deep
learning methods on B-mode ultrasound images [1.1254693939127909]
Carotid atherosclerosis is the major cause of ischemic stroke resulting in significant rates of mortality and disability annually.
This paper introduces an interpretable classification approach of carotid ultrasound images for the risk assessment and stratification of patients with carotid atheromatous plaque.
arXiv Detail & Related papers (2022-02-04T23:10:24Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.