論文の概要: Nested ResNet: A Vision-Based Method for Detecting the Sensing Area of a Drop-in Gamma Probe
- arxiv url: http://arxiv.org/abs/2410.23154v1
- Date: Wed, 30 Oct 2024 16:08:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:26:41.542733
- Title: Nested ResNet: A Vision-Based Method for Detecting the Sensing Area of a Drop-in Gamma Probe
- Title(参考訳): Nested ResNet: 落下ガンマプローブのセンシング領域検出のためのビジョンベース手法
- Authors: Songyu Xu, Yicheng Hu, Jionglong Su, Daniel Elson, Baoru Huang,
- Abstract要約: ドロップインガンマプローブは、リンパ節検出のためのロボット支援最小侵襲手術(RAMIS)に広く用いられている。
従来の研究では、腹腔鏡画像を用いて感知領域の位置を予測しようとしたが、予測精度は不十分であった。
本研究では,プローブの知覚領域を予測するための3分岐深度学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.835688998859888
- License:
- Abstract: Purpose: Drop-in gamma probes are widely used in robotic-assisted minimally invasive surgery (RAMIS) for lymph node detection. However, these devices only provide audio feedback on signal intensity, lacking the visual feedback necessary for precise localisation. Previous work attempted to predict the sensing area location using laparoscopic images, but the prediction accuracy was unsatisfactory. Improvements are needed in the deep learning-based regression approach. Methods: We introduce a three-branch deep learning framework to predict the sensing area of the probe. Specifically, we utilise the stereo laparoscopic images as input for the main branch and develop a Nested ResNet architecture. The framework also incorporates depth estimation via transfer learning and orientation guidance through probe axis sampling. The combined features from each branch enhanced the accuracy of the prediction. Results: Our approach has been evaluated on a publicly available dataset, demonstrating superior performance over previous methods. In particular, our method resulted in a 22.10\% decrease in 2D mean error and a 41.67\% reduction in 3D mean error. Additionally, qualitative comparisons further demonstrated the improved precision of our approach. Conclusion: With extensive evaluation, our solution significantly enhances the accuracy and reliability of sensing area predictions. This advancement enables visual feedback during the use of the drop-in gamma probe in surgery, providing surgeons with more accurate and reliable localisation.}
- Abstract(参考訳): 目的: ドロップインガンマプローブは, リンパ節検出のために, ロボット支援最小侵襲手術 (RAMIS) に広く用いられている。
しかし、これらのデバイスは信号強度に関する音声フィードバックしか提供せず、正確な位置決めに必要な視覚フィードバックを欠いている。
従来の研究では、腹腔鏡画像を用いて感知領域の位置を予測しようとしたが、予測精度は不十分であった。
ディープラーニングベースの回帰アプローチでは、改善が必要である。
方法: プローブの知覚領域を予測するための3分岐深層学習フレームワークを提案する。
具体的には,ステレオラパロスコープ画像をメインブランチの入力として利用し,Nested ResNetアーキテクチャを開発する。
このフレームワークには、転送学習による深さ推定や、プローブ軸サンプリングによる方向誘導も組み込まれている。
各枝の複合的な特徴は予測の精度を高めた。
結果: 提案手法は一般に公開されているデータセットで評価され, 従来の手法よりも優れた性能を示した。
特に, 2次元平均誤差は22.10 %, 3次元平均誤差は41.67 %減少した。
さらに、定性的比較により、我々のアプローチの精度がさらに向上した。
結論: 広範囲な評価により, センサ領域予測の精度と信頼性が著しく向上する。
この進歩は、手術にガンマプローブを投下する際の視覚的フィードバックを可能にし、外科医により正確で信頼性の高いローカライゼーションを提供する。
※
関連論文リスト
- NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Detは、NeRFを用いた屋内マルチビュー3次元検出において、表現学習の強化による優れた性能を実現している。
セマンティックエンハンスメント(セマンティックエンハンスメント)、パースペクティブ・アウェア・サンプリング(パースペクティブ・アウェア・サンプリング)、および順序深度監視を含む3つのソリューションを提案する。
結果として得られたアルゴリズムであるNeRF-Det++は、ScanNetV2とAR KITScenesデータセットで魅力的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-22T11:48:06Z) - Multi-task learning with cross-task consistency for improved depth
estimation in colonoscopy [0.2995885872626565]
我々は、共有エンコーダと2つのデコーダ、すなわち表面正規デコーダと深度推定器を備えた新しいマルチタスク学習(MTL)アプローチを開発する。
比較誤差は14.17%、$delta_1$精度は10.4%改善した。
論文 参考訳(メタデータ) (2023-11-30T16:13:17Z) - The Impact of Loss Functions and Scene Representations for 3D/2D
Registration on Single-view Fluoroscopic X-ray Pose Estimation [1.758213853394712]
我々はまずデジタル再構成ラジオグラフィー(DRR)の効率的な計算のための微分可能プロジェクションレンダリングフレームワークを開発する。
次に, 合成したDRRの画像差を, 地表面の蛍光X線画像に対して定量化する, 様々な候補損失関数を用いて, 反復降下によるポーズ推定を行う。
Mutual Information Loss を用いて,50 人の頭蓋骨の断層X線データを用いて行ったポーズ推定を総合的に評価した結果,DiffProj における識別 (CBCT) とニューラル (NeTT/mNeRF) のシーン表現のどちらを用いたかが示唆された。
論文 参考訳(メタデータ) (2023-08-01T01:12:29Z) - UncLe-SLAM: Uncertainty Learning for Dense Neural SLAM [60.575435353047304]
我々は、高密度ニューラルネットワークの同時局所化とマッピング(SLAM)のための不確実性学習フレームワークを提案する。
本稿では,2次元入力データのみから自己教師付きで学習可能なセンサ不確実性推定のためのオンラインフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T16:26:25Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
既存の検出方法は、パラメータ化バウンディングボックス(BBox)を使用して(水平)オブジェクトをモデル化し、検出する。
このような機構は回転検出に有効な回帰損失を構築するのに基本的な限界があると主張する。
回転した物体をガウス分布としてモデル化することを提案する。
2次元から3次元へのアプローチを、方向推定を扱うアルゴリズム設計により拡張する。
論文 参考訳(メタデータ) (2022-09-22T07:50:48Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - RVMDE: Radar Validated Monocular Depth Estimation for Robotics [5.360594929347198]
両眼視センサの固有剛性校正は正確な深度推定に不可欠である。
あるいは、単眼カメラは、深度推定の精度を犠牲にして制限を緩和し、厳しい環境条件下では課題が悪化する。
本研究は, 環境条件下での深度推定のために, 単眼カメラの細粒度データと融合した場合のレーダーからの粗い信号の有用性について検討する。
論文 参考訳(メタデータ) (2021-09-11T12:02:29Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3次元物体検出は、運転支援システムなどの様々な実用用途で必要とされる重要な機能である。
双眼視やLiDARに頼っている従来の設定に比べて、経済的な解決策として単眼3D検出が注目されているが、それでも満足のいく結果が得られていない。
本稿ではまず,この問題に関する系統的研究を行い,現在の単分子3次元検出問題をインスタンス深度推定問題として単純化できることを考察する。
論文 参考訳(メタデータ) (2021-07-29T16:30:33Z) - Learn Fine-grained Adaptive Loss for Multiple Anatomical Landmark
Detection in Medical Images [15.7026400415269]
本稿ではランドマーク検出のための新しい学習学習フレームワークを提案する。
提案手法は汎用的であり,解剖学的ランドマーク検出の効率向上の可能性を示す。
論文 参考訳(メタデータ) (2021-05-19T13:39:18Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Leveraging Uncertainties for Deep Multi-modal Object Detection in
Autonomous Driving [12.310862288230075]
この研究は、LiDAR点雲とRGBカメラ画像を組み合わせて、堅牢で正確な3Dオブジェクト検出を行う確率論的ディープニューラルネットワークを提案する。
分類および回帰作業における不確実性を明示的にモデル化し、不確実性を活用してサンプリング機構を用いて核融合ネットワークを訓練する。
論文 参考訳(メタデータ) (2020-02-01T14:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。