Fourier Amplitude and Correlation Loss: Beyond Using L2 Loss for Skillful Precipitation Nowcasting
- URL: http://arxiv.org/abs/2410.23159v1
- Date: Wed, 30 Oct 2024 16:12:56 GMT
- Title: Fourier Amplitude and Correlation Loss: Beyond Using L2 Loss for Skillful Precipitation Nowcasting
- Authors: Chiu-Wai Yan, Shi Quan Foo, Van Hoan Trinh, Dit-Yan Yeung, Ka-Hing Wong, Wai-Kin Wong,
- Abstract summary: We propose a new Fourier Amplitude and Correlation Loss (FACL) which consists of two novel loss terms.
The two loss terms work together to replace the traditional $L$ losses such as MSE and weighted MSE for thetemporal prediction problem.
Our method improves perceptual metrics and meteorology skill scores, with a small trade-off to pixel-wise accuracy and structural similarity.
- Score: 11.931403313504754
- License:
- Abstract: Deep learning approaches have been widely adopted for precipitation nowcasting in recent years. Previous studies mainly focus on proposing new model architectures to improve pixel-wise metrics. However, they frequently result in blurry predictions which provide limited utility to forecasting operations. In this work, we propose a new Fourier Amplitude and Correlation Loss (FACL) which consists of two novel loss terms: Fourier Amplitude Loss (FAL) and Fourier Correlation Loss (FCL). FAL regularizes the Fourier amplitude of the model prediction and FCL complements the missing phase information. The two loss terms work together to replace the traditional $L_2$ losses such as MSE and weighted MSE for the spatiotemporal prediction problem on signal-based data. Our method is generic, parameter-free and efficient. Extensive experiments using one synthetic dataset and three radar echo datasets demonstrate that our method improves perceptual metrics and meteorology skill scores, with a small trade-off to pixel-wise accuracy and structural similarity. Moreover, to improve the error margin in meteorological skill scores such as Critical Success Index (CSI) and Fractions Skill Score (FSS), we propose and adopt the Regional Histogram Divergence (RHD), a distance metric that considers the patch-wise similarity between signal-based imagery patterns with tolerance to local transforms. Code is available at https://github.com/argenycw/FACL
Related papers
- Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution.
We introduce a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain.
Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain.
arXiv Detail & Related papers (2024-02-28T09:27:41Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Accelerated Neural Network Training with Rooted Logistic Objectives [13.400503928962756]
We derive a novel sequence of em strictly convex functions that are at least as strict as logistic loss.
Our results illustrate that training with rooted loss function is converged faster and gains performance improvements.
arXiv Detail & Related papers (2023-10-05T20:49:48Z) - Temporal Subsampling Diminishes Small Spatial Scales in Recurrent Neural
Network Emulators of Geophysical Turbulence [0.0]
We investigate how an often overlooked processing step affects the quality of an emulator's predictions.
We implement ML architectures from a class of methods called reservoir computing: (1) a form of spatial Vector Autoregression (N VAR), and (2) an Echo State Network (ESN)
In all cases, subsampling the training data consistently leads to an increased bias at small scales that resembles numerical diffusion.
arXiv Detail & Related papers (2023-04-28T21:34:53Z) - Magic ELF: Image Deraining Meets Association Learning and Transformer [63.761812092934576]
This paper aims to unify CNN and Transformer to take advantage of their learning merits for image deraining.
A novel multi-input attention module (MAM) is proposed to associate rain removal and background recovery.
Our proposed method (dubbed as ELF) outperforms the state-of-the-art approach (MPRNet) by 0.25 dB on average.
arXiv Detail & Related papers (2022-07-21T12:50:54Z) - Can we integrate spatial verification methods into neural-network loss
functions for atmospheric science? [0.030458514384586396]
Neural networks (NNs) in atmospheric science are almost always trained to optimize pixelwise loss functions.
This establishes a disconnect between model verification during vs. after training.
We develop spatially enhanced loss functions (SELF) and demonstrate their use for a real-world problem: predicting the occurrence of thunderstorms.
arXiv Detail & Related papers (2022-03-21T17:18:43Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Contrastive Learning for Local and Global Learning MRI Reconstruction [25.279021256319467]
We propose a Contrastive Learning for Local and Global Learning MRI Reconstruction Network (CLGNet)
Specifically, according to the Fourier theory, each value in the Fourier domain is calculated from all the values in Spatial domain.
Compared with self-attention and transformer, the SFL has a stronger learning ability and can achieve better performance in less time.
arXiv Detail & Related papers (2021-11-30T08:23:53Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.