SciPIP: An LLM-based Scientific Paper Idea Proposer
- URL: http://arxiv.org/abs/2410.23166v2
- Date: Mon, 17 Feb 2025 08:59:45 GMT
- Title: SciPIP: An LLM-based Scientific Paper Idea Proposer
- Authors: Wenxiao Wang, Lihui Gu, Liye Zhang, Yunxiang Luo, Yi Dai, Chen Shen, Liang Xie, Binbin Lin, Xiaofei He, Jieping Ye,
- Abstract summary: We introduce SciPIP, an innovative framework designed to enhance the proposal of scientific ideas through improvements in both literature retrieval and idea generation.
Our experiments, conducted across various domains such as natural language processing and computer vision, demonstrate SciPIP's capability to generate a multitude of innovative and useful ideas.
- Score: 30.670219064905677
- License:
- Abstract: The rapid advancement of large language models (LLMs) has opened new possibilities for automating the proposal of innovative scientific ideas. This process involves two key phases: literature retrieval and idea generation. However, existing approaches often fall short due to their reliance on keyword-based search tools during the retrieval phase, which neglects crucial semantic information and frequently results in incomplete retrieval outcomes. Similarly, in the idea generation phase, current methodologies tend to depend solely on the internal knowledge of LLMs or metadata from retrieved papers, thereby overlooking significant valuable insights contained within the full texts. To address these limitations, we introduce SciPIP, an innovative framework designed to enhance the LLM-based proposal of scientific ideas through improvements in both literature retrieval and idea generation. Our approach begins with the construction of a comprehensive literature database that supports advanced retrieval based not only on keywords but also on semantics and citation relationships. This is complemented by the introduction of a multi-granularity retrieval algorithm aimed at ensuring more thorough and exhaustive retrieval results. For the idea generation phase, we propose a dual-path framework that effectively integrates both the content of retrieved papers and the extensive internal knowledge of LLMs. This integration significantly boosts the novelty, feasibility, and practical value of proposed ideas. Our experiments, conducted across various domains such as natural language processing and computer vision, demonstrate SciPIP's capability to generate a multitude of innovative and useful ideas. These findings underscore SciPIP's potential as a valuable tool for researchers seeking to advance their fields with groundbreaking concepts.
Related papers
- CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning [0.8192907805418583]
Chain-of-Associated-Thoughts (CoAT) framework introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'
By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time.
These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity.
arXiv Detail & Related papers (2025-02-04T15:10:33Z) - CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models [14.161627541155775]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence.
This paper explores the potential of LLMs to drive the discovery of symbolic solutions within scientific and engineering disciplines.
arXiv Detail & Related papers (2024-12-25T12:27:27Z) - IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
Large Language Models (LLMs) have transformed how people interact with artificial intelligence (AI) systems.
We propose IdeaBench, a benchmark system that includes a comprehensive dataset and an evaluation framework.
Our dataset comprises titles and abstracts from a diverse range of influential papers, along with their referenced works.
Our evaluation framework is a two-stage process: first, using GPT-4o to rank ideas based on user-specified quality indicators such as novelty and feasibility, enabling scalable personalization.
arXiv Detail & Related papers (2024-10-31T17:04:59Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
We introduce a novel framework based on large language models (LLMs) that combines a progressive prompting algorithm with a dual-agent system, named LLM-Duo.
Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Exploring the landscape of large language models: Foundations, techniques, and challenges [8.042562891309414]
The article sheds light on the mechanics of in-context learning and a spectrum of fine-tuning approaches.
It explores how LLMs can be more closely aligned with human preferences through innovative reinforcement learning frameworks.
The ethical dimensions of LLM deployment are discussed, underscoring the need for mindful and responsible application.
arXiv Detail & Related papers (2024-04-18T08:01:20Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.