SciPIP: An LLM-based Scientific Paper Idea Proposer
- URL: http://arxiv.org/abs/2410.23166v2
- Date: Mon, 17 Feb 2025 08:59:45 GMT
- Title: SciPIP: An LLM-based Scientific Paper Idea Proposer
- Authors: Wenxiao Wang, Lihui Gu, Liye Zhang, Yunxiang Luo, Yi Dai, Chen Shen, Liang Xie, Binbin Lin, Xiaofei He, Jieping Ye,
- Abstract summary: We introduce SciPIP, an innovative framework designed to enhance the proposal of scientific ideas through improvements in both literature retrieval and idea generation.<n>Our experiments, conducted across various domains such as natural language processing and computer vision, demonstrate SciPIP's capability to generate a multitude of innovative and useful ideas.
- Score: 30.670219064905677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) has opened new possibilities for automating the proposal of innovative scientific ideas. This process involves two key phases: literature retrieval and idea generation. However, existing approaches often fall short due to their reliance on keyword-based search tools during the retrieval phase, which neglects crucial semantic information and frequently results in incomplete retrieval outcomes. Similarly, in the idea generation phase, current methodologies tend to depend solely on the internal knowledge of LLMs or metadata from retrieved papers, thereby overlooking significant valuable insights contained within the full texts. To address these limitations, we introduce SciPIP, an innovative framework designed to enhance the LLM-based proposal of scientific ideas through improvements in both literature retrieval and idea generation. Our approach begins with the construction of a comprehensive literature database that supports advanced retrieval based not only on keywords but also on semantics and citation relationships. This is complemented by the introduction of a multi-granularity retrieval algorithm aimed at ensuring more thorough and exhaustive retrieval results. For the idea generation phase, we propose a dual-path framework that effectively integrates both the content of retrieved papers and the extensive internal knowledge of LLMs. This integration significantly boosts the novelty, feasibility, and practical value of proposed ideas. Our experiments, conducted across various domains such as natural language processing and computer vision, demonstrate SciPIP's capability to generate a multitude of innovative and useful ideas. These findings underscore SciPIP's potential as a valuable tool for researchers seeking to advance their fields with groundbreaking concepts.
Related papers
- Science Hierarchography: Hierarchical Organization of Science Literature [20.182213614072836]
We motivate SCIENCE HARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure.
We develop a range of algorithms to achieve the goals of SCIENCE HIERARCHOGRAPHY.
Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods.
arXiv Detail & Related papers (2025-04-18T17:59:29Z) - Graph of AI Ideas: Leveraging Knowledge Graphs and LLMs for AI Research Idea Generation [25.04071920426971]
We propose a framework called the Graph of AI Ideas (GoAI) for the AI research field, which is dominated by open-access papers.
This framework organizes relevant literature into entities within a knowledge graph and summarizes the semantic information contained in citations into relations within the graph.
arXiv Detail & Related papers (2025-03-11T15:36:38Z) - CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models [14.161627541155775]
Large Language Models (LLMs) have emerged as transformative tools in artificial intelligence.
This paper explores the potential of LLMs to drive the discovery of symbolic solutions within scientific and engineering disciplines.
arXiv Detail & Related papers (2024-12-25T12:27:27Z) - Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
Large Language Models (LLMs) have transformed how people interact with artificial intelligence (AI) systems.
We propose IdeaBench, a benchmark system that includes a comprehensive dataset and an evaluation framework.
Our dataset comprises titles and abstracts from a diverse range of influential papers, along with their referenced works.
Our evaluation framework is a two-stage process: first, using GPT-4o to rank ideas based on user-specified quality indicators such as novelty and feasibility, enabling scalable personalization.
arXiv Detail & Related papers (2024-10-31T17:04:59Z) - Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents [64.64280477958283]
An exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions.
Recent developments in large language models(LLMs) suggest a promising avenue for automating the generation of novel research ideas.
We propose a Chain-of-Ideas(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain.
arXiv Detail & Related papers (2024-10-17T03:26:37Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
We focus on idea assessment, which aims to leverage the knowledge of large language models to assess the merit of scientific ideas.
We release a benchmark dataset from nearly four thousand manuscript papers with full texts, meticulously designed to train and evaluate the performance of different approaches to this task.
Our findings suggest that the representations of large language models hold more potential in quantifying the value of ideas than their generative outputs.
arXiv Detail & Related papers (2024-09-07T02:07:22Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
We introduce a novel framework based on large language models (LLMs) that combines a progressive prompting algorithm with a dual-agent system, named LLM-Duo.
Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - Frontiers of Deep Learning: From Novel Application to Real-World Deployment [3.3813152538225135]
This report studies two research papers that represent recent progress on deep learning.
The first paper applied the transformer networks, which are typically used in language models, to improve the quality of synthetic aperture radar image.
The second paper presents an in-storage computing design solution to enable cost-efficient and high-performance implementations of deep learning recommendation systems.
arXiv Detail & Related papers (2024-07-19T15:11:55Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Context-Enhanced Language Models for Generating Multi-Paper Citations [35.80247519023821]
We propose a method that leverages Large Language Models (LLMs) to generate multi-citation sentences.
Our approach involves a single source paper and a collection of target papers, culminating in a coherent paragraph containing multi-sentence citation text.
arXiv Detail & Related papers (2024-04-22T04:30:36Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Bridging Research and Readers: A Multi-Modal Automated Academic Papers
Interpretation System [47.13932723910289]
We introduce an open-source multi-modal automated academic paper interpretation system (MMAPIS) with three-step process stages.
It employs the hybrid modality preprocessing and alignment module to extract plain text, and tables or figures from documents separately.
It then aligns this information based on the section names they belong to, ensuring that data with identical section names are categorized under the same section.
It utilizes the extracted section names to divide the article into shorter text segments, facilitating specific summarizations both within and between sections via LLMs.
arXiv Detail & Related papers (2024-01-17T11:50:53Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - SciLit: A Platform for Joint Scientific Literature Discovery,
Summarization and Citation Generation [11.186252009101077]
We propose SciLit, a pipeline that automatically recommends relevant papers, extracts highlights, and suggests a reference sentence as a citation of a paper.
SciLit efficiently recommends papers from large databases of hundreds of millions of papers using a two-stage pre-fetching and re-ranking literature search system.
arXiv Detail & Related papers (2023-06-06T09:34:45Z) - SciMON: Scientific Inspiration Machines Optimized for Novelty [68.46036589035539]
We explore and enhance the ability of neural language models to generate novel scientific directions grounded in literature.
We take a dramatic departure with a novel setting in which models use as input background contexts.
We present SciMON, a modeling framework that uses retrieval of "inspirations" from past scientific papers.
arXiv Detail & Related papers (2023-05-23T17:12:08Z) - Retrieval Augmentation for Commonsense Reasoning: A Unified Approach [64.63071051375289]
We propose a unified framework of retrieval-augmented commonsense reasoning (called RACo)
Our proposed RACo can significantly outperform other knowledge-enhanced method counterparts.
arXiv Detail & Related papers (2022-10-23T23:49:08Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z) - Enhancing Reading Strategies by Exploring A Theme-based Approach to
Literature Surveys [5.004814662623872]
We have designed a methodology that allows users to visually and thematically explore corpora, while developing personalised holistic reading strategies.
Using in-depth semi-structured interviews and stimulated recall, we found that users: (i) selected papers that they otherwise would not have read, (ii) developed a more coherent reading strategy, and (iii) understood the thematic structure and relationships between papers more effectively.
arXiv Detail & Related papers (2021-02-10T10:36:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.