論文の概要: OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction
- arxiv url: http://arxiv.org/abs/2410.23278v1
- Date: Wed, 30 Oct 2024 17:56:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:27:24.983711
- Title: OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction
- Title(参考訳): OpenSatMap:大規模地図構築のための細粒度高解像度衛星データセット
- Authors: Hongbo Zhao, Lue Fan, Yuntao Chen, Haochen Wang, yuran Yang, Xiaojuan Jin, Yixin Zhang, Gaofeng Meng, Zhaoxiang Zhang,
- Abstract要約: OpenSatMapは、大規模マップ構築のための細粒度で高解像度の衛星データセットである。
データセットの公開とメンテナンスにより、衛星ベースのマップ構築と、自律運転のような下流タスクのための高品質なベンチマークを提供する。
- 参考スコア(独自算出の注目度): 65.4151284975348
- License:
- Abstract: In this paper, we propose OpenSatMap, a fine-grained, high-resolution satellite dataset for large-scale map construction. Map construction is one of the foundations of the transportation industry, such as navigation and autonomous driving. Extracting road structures from satellite images is an efficient way to construct large-scale maps. However, existing satellite datasets provide only coarse semantic-level labels with a relatively low resolution (up to level 19), impeding the advancement of this field. In contrast, the proposed OpenSatMap (1) has fine-grained instance-level annotations; (2) consists of high-resolution images (level 20); (3) is currently the largest one of its kind; (4) collects data with high diversity. Moreover, OpenSatMap covers and aligns with the popular nuScenes dataset and Argoverse 2 dataset to potentially advance autonomous driving technologies. By publishing and maintaining the dataset, we provide a high-quality benchmark for satellite-based map construction and downstream tasks like autonomous driving.
- Abstract(参考訳): 本稿では,大規模地図構築のための細粒度高解像度衛星データセットOpenSatMapを提案する。
地図構築は、ナビゲーションや自動運転といった交通産業の基礎の1つである。
衛星画像から道路構造を抽出することは,大規模地図の構築に有効な方法である。
しかし、既存の衛星データセットは、比較的解像度の低い粗いセマンティックレベルのラベルのみを提供し(レベル19まで)、この分野の進歩を妨げる。
対照的に、提案したOpenSatMap (1) は、粒度の細かいインスタンスレベルのアノテーションを持ち、(2) は、高解像度の画像(レベル20)で構成され、(3) は、現在、その種の最大のものであり、(4) は、高多様性のデータを収集する。
さらに、OpenSatMapは、一般的なnuScenesデータセットとArgoverse 2データセットをカバーし、調整することで、潜在的に高度な自動運転技術を実現している。
データセットの公開とメンテナンスにより、衛星ベースのマップ構築と、自律運転のような下流タスクのための高品質なベンチマークを提供する。
関連論文リスト
- Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
高精細マップ(HDマップ)は、自動運転車の正確なナビゲーションと意思決定に不可欠である。
オンボードセンサーを用いたHDマップのオンライン構築が,有望なソリューションとして浮上している。
本稿では,事前マップのパワーを活用して,これらの制約に対処するPresidedDriveフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T06:17:46Z) - CartoMark: a benchmark dataset for map pattern recognition and 1 map
content retrieval with machine intelligence [9.652629004863364]
我々は,地図テキストアノテーション認識,地図シーン分類,地図超解像再構成,地図スタイル転送のための大規模ベンチマークデータセットを開発した。
これらの良好なラベル付きデータセットは、マップ特徴の検出、マップパターン認識、マップコンテンツ検索を行う最先端のマシンインテリジェンス技術を促進する。
論文 参考訳(メタデータ) (2023-12-14T01:54:38Z) - Online Vectorized HD Map Construction using Geometry [17.33973935325903]
本稿では,地図インスタンスのユークリッド形状と関係を基本的な知覚を超えて学習するGeMapを提案する。
提案手法は,NuScenesおよびArgoverse 2データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-12-06T08:26:26Z) - Complementing Onboard Sensors with Satellite Map: A New Perspective for
HD Map Construction [31.0701760075554]
高精細(HD)マップは自律運転システムにおいて重要な役割を担っている。
近年,車載センサを用いてHDマップをリアルタイムに構築する手法が提案されている。
搭載センサーを補完する衛星地図を用いて,HDマップ構築を促進する新しい視点を探索する。
論文 参考訳(メタデータ) (2023-08-29T16:33:16Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
我々は、分岐とマージによるトポロジー変化を含む多くのレーンを持つ複雑な高速道路のレーン境界を描くことに集中する。
グラフのノードがレーン境界の局所領域の幾何学的および位相的特性を符号化する有向非巡回グラフィカルモデル(DAG)における推論として問題を定式化する。
2つの異なる州における2つの幹線道路における我々のアプローチの有効性を示し、高い精度とリコールと89%の正しいトポロジーを示す。
論文 参考訳(メタデータ) (2020-12-22T21:58:57Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
論文 参考訳(メタデータ) (2020-12-21T21:59:54Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
我々は、30億点近い注釈付きポイントを持つ都市規模の測光点クラウドデータセットを提示する。
私たちのデータセットは、イギリスの3つの都市からなり、都市の景観の約7.6km2をカバーしています。
我々は,データセット上での最先端アルゴリズムの性能を評価し,その結果を包括的に分析する。
論文 参考訳(メタデータ) (2020-09-07T14:47:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。