Generalized Distribution Prediction for Asset Returns
- URL: http://arxiv.org/abs/2410.23296v1
- Date: Tue, 15 Oct 2024 15:31:44 GMT
- Title: Generalized Distribution Prediction for Asset Returns
- Authors: Ísak Pétursson, María Óskarsdóttir,
- Abstract summary: We present a novel approach for predicting the distribution of asset returns using a quantile-based method with Long Short-Term Memory (LSTM) networks.
Our model is designed in two stages: the first focuses on predicting the quantiles of normalized asset returns using asset-specific features, while the second stage incorporates market data to adjust these predictions for broader economic conditions.
- Score: 0.9944647907864256
- License:
- Abstract: We present a novel approach for predicting the distribution of asset returns using a quantile-based method with Long Short-Term Memory (LSTM) networks. Our model is designed in two stages: the first focuses on predicting the quantiles of normalized asset returns using asset-specific features, while the second stage incorporates market data to adjust these predictions for broader economic conditions. This results in a generalized model that can be applied across various asset classes, including commodities, cryptocurrencies, as well as synthetic datasets. The predicted quantiles are then converted into full probability distributions through kernel density estimation, allowing for more precise return distribution predictions and inferencing. The LSTM model significantly outperforms a linear quantile regression baseline by 98% and a dense neural network model by over 50%, showcasing its ability to capture complex patterns in financial return distributions across both synthetic and real-world data. By using exclusively asset-class-neutral features, our model achieves robust, generalizable results.
Related papers
- NBMLSS: probabilistic forecasting of electricity prices via Neural Basis Models for Location Scale and Shape [44.99833362998488]
We deploy a Neural Basis Model for Location, Scale and Shape, that blends the principled interpretability of GAMLSS with a computationally scalable shared basis decomposition.
Experiments have been conducted on multiple market regions, achieving probabilistic forecasting performance comparable to that of distributional neural networks.
arXiv Detail & Related papers (2024-11-21T08:17:53Z) - Distributional Refinement Network: Distributional Forecasting via Deep Learning [0.8142555609235358]
A key task in actuarial modelling involves modelling the distributional properties of losses.
We propose a Distributional Refinement Network (DRN), which combines an inherently interpretable baseline model with a flexible neural network.
DRN captures varying effects of features across all quantiles, improving predictive performance while maintaining adequate interpretability.
arXiv Detail & Related papers (2024-06-03T05:14:32Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
In science and engineering, we often work with models designed for accurate prediction of variables of interest.
Recognizing that these models are approximations of reality, it becomes desirable to apply multiple models to the same data and integrate their outcomes.
arXiv Detail & Related papers (2024-03-03T04:21:21Z) - From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks [0.0]
We reinvigorate maximum likelihood estimation (MLE) for macroeconomic density forecasting through a novel neural network architecture with dedicated mean and variance hemispheres.
Our Hemisphere Neural Network (HNN) provides proactive volatility forecasts based on leading indicators when it can, and reactive volatility based on the magnitude of previous prediction errors when it must.
arXiv Detail & Related papers (2023-11-27T21:37:50Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Distributional Reinforcement Learning with Dual Expectile-Quantile Regression [51.87411935256015]
quantile regression approach to distributional RL provides flexible and effective way of learning arbitrary return distributions.
We show that distributional guarantees vanish, and we empirically observe that the estimated distribution rapidly collapses to its mean estimation.
Motivated by the efficiency of $L$-based learning, we propose to jointly learn expectiles and quantiles of the return distribution in a way that allows efficient learning while keeping an estimate of the full distribution of returns.
arXiv Detail & Related papers (2023-05-26T12:30:05Z) - Forecasting High-Dimensional Covariance Matrices of Asset Returns with
Hybrid GARCH-LSTMs [0.0]
This paper investigates the ability of hybrid models, mixing GARCH processes and neural networks, to forecast covariance matrices of asset returns.
The new model proposed is very promising as it not only outperforms the equally weighted portfolio, but also by a significant margin its econometric counterpart.
arXiv Detail & Related papers (2021-08-25T23:41:43Z) - Parsimonious Quantile Regression of Financial Asset Tail Dynamics via
Sequential Learning [35.34574502348672]
We propose a parsimonious quantile regression framework to learn the dynamic tail behaviors of financial asset returns.
Our model captures well both the time-varying characteristic and the asymmetrical heavy-tail property of financial time series.
arXiv Detail & Related papers (2020-10-16T09:35:52Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.