Advanced Cyberattack Detection in Internet of Medical Things (IoMT) Using Convolutional Neural Networks
- URL: http://arxiv.org/abs/2410.23306v1
- Date: Sat, 26 Oct 2024 14:27:17 GMT
- Title: Advanced Cyberattack Detection in Internet of Medical Things (IoMT) Using Convolutional Neural Networks
- Authors: Alireza Mohammadi, Hosna Ghahramani, Seyyed Amir Asghari, Mehdi Aminian,
- Abstract summary: The integration of the Internet of Medical Things (IoMT) into healthcare systems has significantly enhanced patient care.
This paper presents a novel approach based on Convolutional Neural Networks (CNNs) for detecting cyberattacks within IoMT environments.
- Score: 1.4499463058550681
- License:
- Abstract: The increasing integration of the Internet of Medical Things (IoMT) into healthcare systems has significantly enhanced patient care but has also introduced critical cybersecurity challenges. This paper presents a novel approach based on Convolutional Neural Networks (CNNs) for detecting cyberattacks within IoMT environments. Unlike previous studies that predominantly utilized traditional machine learning (ML) models or simpler Deep Neural Networks (DNNs), the proposed model leverages the capabilities of CNNs to effectively analyze the temporal characteristics of network traffic data. Trained and evaluated on the CICIoMT2024 dataset, which comprises 18 distinct types of cyberattacks across a range of IoMT devices, the proposed CNN model demonstrates superior performance compared to previous state-of-the-art methods, achieving a perfect accuracy of 99% in binary, categorical, and multiclass classification tasks. This performance surpasses that of conventional ML models such as Logistic Regression, AdaBoost, DNNs, and Random Forests. These findings highlight the potential of CNNs to substantially improve IoMT cybersecurity, thereby ensuring the protection and integrity of connected healthcare systems.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
arXiv Detail & Related papers (2024-09-06T17:48:44Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
Our proposed model consists on a combination of convolutional neural network (CNN) and long short-term memory (LSTM) deep learning (DL) models.
This fusion facilitates the detection and classification of IoT traffic into binary categories, benign and malicious activities.
Our proposed model achieves an accuracy rate of 98.42%, accompanied by a minimal loss of 0.0275.
arXiv Detail & Related papers (2024-05-28T22:12:15Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Deep Transfer Learning Based Intrusion Detection System for Electric
Vehicular Networks [0.0]
The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures.
Traditional machine learning-based IDS has to update to cope with the security requirements of the current environment.
This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models.
arXiv Detail & Related papers (2021-07-12T03:06:49Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - 1D CNN Based Network Intrusion Detection with Normalization on
Imbalanced Data [0.19336815376402716]
Intrusion detection system (IDS) plays an essential role in computer networks protecting computing resources and data from outside attacks.
Recent IDS faces challenges improving flexibility and efficiency of the IDS for unexpected and unpredictable attacks.
We propose a deep learning approach for developing the efficient and flexible IDS using one-dimensional Convolutional Neural Network (1D-CNN)
arXiv Detail & Related papers (2020-03-01T12:23:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.