MassSpecGym: A benchmark for the discovery and identification of molecules
- URL: http://arxiv.org/abs/2410.23326v1
- Date: Wed, 30 Oct 2024 15:08:05 GMT
- Title: MassSpecGym: A benchmark for the discovery and identification of molecules
- Authors: Roman Bushuiev, Anton Bushuiev, Niek F. de Jonge, Adamo Young, Fleming Kretschmer, Raman Samusevich, Janne Heirman, Fei Wang, Luke Zhang, Kai Dührkop, Marcus Ludwig, Nils A. Haupt, Apurva Kalia, Corinna Brungs, Robin Schmid, Russell Greiner, Bo Wang, David S. Wishart, Li-Ping Liu, Juho Rousu, Wout Bittremieux, Hannes Rost, Tytus D. Mak, Soha Hassoun, Florian Huber, Justin J. J. van der Hooft, Michael A. Stravs, Sebastian Böcker, Josef Sivic, Tomáš Pluskal,
- Abstract summary: We propose MassSpecGym -- the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data.
Our benchmark comprises the largest publicly available collection of high-quality labeled MS/MS spectra.
It defines three MS/MS annotation challenges: textitde novo molecular structure generation, molecule retrieval, and spectrum simulation.
- Score: 21.471140898806315
- License:
- Abstract: The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts. As a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby limiting our understanding of the underlying (bio)chemical processes. Despite decades of progress in machine learning applications for predicting molecular structures from MS/MS spectra, the development of new methods is severely hindered by the lack of standard datasets and evaluation protocols. To address this problem, we propose MassSpecGym -- the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data. Our benchmark comprises the largest publicly available collection of high-quality labeled MS/MS spectra and defines three MS/MS annotation challenges: \textit{de novo} molecular structure generation, molecule retrieval, and spectrum simulation. It includes new evaluation metrics and a generalization-demanding data split, therefore standardizing the MS/MS annotation tasks and rendering the problem accessible to the broad machine learning community. MassSpecGym is publicly available at \url{https://github.com/pluskal-lab/MassSpecGym}.
Related papers
- Unraveling Molecular Structure: A Multimodal Spectroscopic Dataset for Chemistry [0.1747623282473278]
This dataset comprises simulated $1$H-NMR, $13$C-NMR, HSQC-NMR, Infrared, and Mass spectra for 790k molecules extracted from chemical reactions in patent data.
We provide benchmarks for evaluating single-modality tasks such as structure elucidation, predicting the spectra for a target molecule, and functional group predictions.
arXiv Detail & Related papers (2024-07-04T12:52:48Z) - Machine learning meets mass spectrometry: a focused perspective [0.0]
Mass spectrometry is a widely used method to study molecules and processes in medicine, life sciences, chemistry, and industrial product quality control, among many other applications.
One of the main features of some mass spectrometry techniques is the extensive level of characterization and a large amount of generated data per measurement.
With the development of machine learning methods, the opportunity arises to unlock the potential of these data, enabling previously inaccessible discoveries.
arXiv Detail & Related papers (2024-06-27T14:18:23Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - De-novo Identification of Small Molecules from Their GC-EI-MS Spectra [0.0]
Machine learning based emphde-novo methods, which derive molecular structure directly from its mass spectrum gained attention recently.
We present anovel method in this family, addressing aspecific usecase of GC-EI-MS spectra, which is particularly hard due to lack of additional information from the first stage of MS/MS experiments.
arXiv Detail & Related papers (2023-04-04T08:46:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Multi-modal Molecule Structure-text Model for Text-based Retrieval and
Editing [107.49804059269212]
We present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions.
In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts.
arXiv Detail & Related papers (2022-12-21T06:18:31Z) - Graph-based Molecular Representation Learning [59.06193431883431]
Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science.
Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning.
arXiv Detail & Related papers (2022-07-08T17:43:20Z) - MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using
Graph Transformers [3.2951121243459522]
Tandem mass spectra capture fragmentation patterns that provide key structural information about a molecule.
For over seventy years, spectrum prediction has remained a key challenge in the field.
We propose a new model, MassFormer, for accurately predicting tandem mass spectra.
arXiv Detail & Related papers (2021-11-08T20:55:15Z) - Machine-learning-enhanced time-of-flight mass spectrometry analysis [10.16825220733013]
We introduce an approach that leverages modern machine learning technique to identify peak patterns in time-of-flight mass spectra within microseconds.
Our approach is cross-validated on mass spectra generated from different time-of-flight mass spectrometry(ToF-MS) techniques, offering the ToF-MS community an open-source, intelligent mass spectra analysis.
arXiv Detail & Related papers (2020-10-02T14:35:47Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.