論文の概要: ASURA-FDPS-ML: Star-by-star Galaxy Simulations Accelerated by Surrogate Modeling for Supernova Feedback
- arxiv url: http://arxiv.org/abs/2410.23346v1
- Date: Wed, 30 Oct 2024 18:00:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:26.745783
- Title: ASURA-FDPS-ML: Star-by-star Galaxy Simulations Accelerated by Surrogate Modeling for Supernova Feedback
- Title(参考訳): ASURA-FDPS-ML:超新星帰還のための代理モデルによる星間銀河シミュレーション
- Authors: Keiya Hirashima, Kana Moriwaki, Michiko S. Fujii, Yutaka Hirai, Takayuki R. Saitoh, Junnichiro Makino, Ulrich P. Steinwandel, Shirley Ho,
- Abstract要約: 代理モデルによって加速される新しい高分解能銀河シミュレーションを導入し、計算コストを約75%削減する。
約8太陽質量のゼロ年代主系列質量を持つ質量級の恒星は、核崩壊型超新星(CCSNe)として爆発する
計算コストを削減し,物理スケールギャップを効果的に橋渡しし,マルチスケールシミュレーションを可能にする。
- 参考スコア(独自算出の注目度): 0.7324709841516586
- License:
- Abstract: We introduce new high-resolution galaxy simulations accelerated by a surrogate model that reduces the computation cost by approximately 75 percent. Massive stars with a Zero Age Main Sequence mass of about 8 solar masses and above explode as core-collapse supernovae (CCSNe), which play a critical role in galaxy formation. The energy released by CCSNe is essential for regulating star formation and driving feedback processes in the interstellar medium (ISM). However, the short integration timesteps required for SNe feedback present significant bottlenecks in star-by-star galaxy simulations that aim to capture individual stellar dynamics and the inhomogeneous shell expansion of SNe within the turbulent ISM. Our new framework combines direct numerical simulations and surrogate modeling, including machine learning and Gibbs sampling. The star formation history and the time evolution of outflow rates in the galaxy match those obtained from resolved direct numerical simulations. Our new approach achieves high-resolution fidelity while reducing computational costs, effectively bridging the physical scale gap and enabling multi-scale simulations.
- Abstract(参考訳): 代理モデルによって加速される新しい高分解能銀河シミュレーションを導入し、計算コストを約75%削減する。
ゼロエイジ主系列質量は約8太陽質量以上で、核崩壊型超新星(CCSNe)として爆発し、銀河形成に重要な役割を果たしている。
CCSNeによって放出されるエネルギーは、星間物質(ISM)の星形成と駆動のフィードバックプロセスの制御に不可欠である。
しかし、SNeのフィードバックに必要な短い積分時間ステップは、恒星ごとの銀河シミュレーションにおいて、個々の恒星のダイナミクスと、乱流ISM内のSNeの非均一な殻膨張を捉えるために重要なボトルネックとなる。
我々の新しいフレームワークは、直接数値シミュレーションと、機械学習やギブスサンプリングを含む代理モデリングを組み合わせる。
銀河における星形成の歴史と流出速度の時間進化は、解決された直接数値シミュレーションから得られたものと一致する。
計算コストを削減し,物理スケールギャップを効果的に橋渡しし,マルチスケールシミュレーションを可能にする。
関連論文リスト
- A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
薬物発見において、分子動力学シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合の正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
我々は、標準的な数値MDシミュレーションよりも2000$times$のスピードアップを達成し、安定性の指標の下では、他のMLアプローチよりも最大80%高い効率で、NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Surrogate Modeling for Computationally Expensive Simulations of
Supernovae in High-Resolution Galaxy Simulations [0.7927502566022343]
我々は,超新星が周囲のガスに与える影響を予測するため,機械学習とギブスサンプリングを組み合わせた手法を開発した。
本手法は、SNサブグリッドモデルを置き換えることができ、銀河形成シミュレーションにおいて未解決SNフィードバックを適切にシミュレートするのに役立つ。
論文 参考訳(メタデータ) (2023-11-14T19:00:03Z) - Machine Learning methods for simulating particle response in the Zero
Degree Calorimeter at the ALICE experiment, CERN [8.980453507536017]
現在、CERN GRIDの計算能力の半分以上が高エネルギー物理シミュレーションに使われている。
大型ハドロン衝突型加速器(LHC)の最新情報により、より効率的なシミュレーション手法の開発の必要性が高まっている。
機械学習を利用した問題に対する代替手法を提案する。
論文 参考訳(メタデータ) (2023-06-23T16:45:46Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - 3D-Spatiotemporal Forecasting the Expansion of Supernova Shells Using
Deep Learning toward High-Resolution Galaxy Simulations [0.0]
超新星(SNe)の短い統合タイムステップは、高分解能銀河シミュレーションにおいて深刻なボトルネックとなっている。
SN爆発後の殻膨張を予測するための深層学習モデルである3D-MIMを開発した。
論文 参考訳(メタデータ) (2023-01-31T19:00:32Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
集合ニュートリノ振動は、天体物理学的な設定においてレプトンのフレーバーを輸送する上で重要な役割を担っている。
高速振動を呈する単純多角ジオメトリーにおける平衡外フレーバーのフルダイナミクスについて検討した。
我々はこれらの高速集団モードが同じ動的相転移によって生成されることを示す。
論文 参考訳(メタデータ) (2022-03-05T17:00:06Z) - Satellite galaxy abundance dependency on cosmology in Magneticum
simulations [101.18253437732933]
宇宙論的パラメータに基づく衛星量のエミュレータを構築した。
A$ と $beta$ はたとえ弱いとしても、宇宙的パラメータに依存する。
また、衛星の宇宙論の依存性は、フル物理シミュレーション(FP)、ダークマターシミュレーション(DMO)、非放射性シミュレーション(非放射性シミュレーション)の違いも示している。
論文 参考訳(メタデータ) (2021-10-11T18:00:02Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Fast and Accurate Non-Linear Predictions of Universes with Deep Learning [21.218297581239664]
我々は、高速線形予測を数値シミュレーションから完全に非線形な予測に変換するV-Netベースのモデルを構築した。
我々のNNモデルはシミュレーションを小さなスケールにエミュレートすることを学び、現在の最先端の近似手法よりも高速かつ高精度である。
論文 参考訳(メタデータ) (2020-12-01T03:30:37Z) - AI-assisted super-resolution cosmological simulations [9.59904742274332]
我々は、高分解能(HR)画像データから学習し、異なる低分解能(LR)画像の高精度超解像(SR)バージョンを作成するニューラルネットワークを開発した。
我々は, 512倍の粒子を生成し, 初期位置からの変位を予測することにより, シミュレーションの精度を向上させることができる。
我々のモデルは16対の小容量LR-HRシミュレーションから学習し、その結果、HR物質パワースペクトルを最大16,h-1mathrmMpc$、HRハロ質量関数を10ドル以内で再現するSRシミュレーションを生成することができる。
論文 参考訳(メタデータ) (2020-10-13T18:04:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。