Domain-decomposed image classification algorithms using linear discriminant analysis and convolutional neural networks
- URL: http://arxiv.org/abs/2410.23359v1
- Date: Wed, 30 Oct 2024 18:07:12 GMT
- Title: Domain-decomposed image classification algorithms using linear discriminant analysis and convolutional neural networks
- Authors: Axel Klawonn, Martin Lanser, Janine Weber,
- Abstract summary: Two different domain decomposed CNN models are experimentally compared for different image classification problems.
The resulting models show improved classification accuracies compared to the corresponding, composed global CNN model.
A novel decomposed LDA strategy is proposed which also relies on a localization approach and which is combined with a small neural network model.
- Score: 0.0
- License:
- Abstract: In many modern computer application problems, the classification of image data plays an important role. Among many different supervised machine learning models, convolutional neural networks (CNNs) and linear discriminant analysis (LDA) as well as sophisticated variants thereof are popular techniques. In this work, two different domain decomposed CNN models are experimentally compared for different image classification problems. Both models are loosely inspired by domain decomposition methods and in addition, combined with a transfer learning strategy. The resulting models show improved classification accuracies compared to the corresponding, composed global CNN model without transfer learning and besides, also help to speed up the training process. Moreover, a novel decomposed LDA strategy is proposed which also relies on a localization approach and which is combined with a small neural network model. In comparison with a global LDA applied to the entire input data, the presented decomposed LDA approach shows increased classification accuracies for the considered test problems.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Hidden Classification Layers: Enhancing linear separability between
classes in neural networks layers [0.0]
We investigate the impact on deep network performances of a training approach.
We propose a neural network architecture which induces an error function involving the outputs of all the network layers.
arXiv Detail & Related papers (2023-06-09T10:52:49Z) - A Domain Decomposition-Based CNN-DNN Architecture for Model Parallel Training Applied to Image Recognition Problems [0.0]
A novel CNN-DNN architecture is proposed that naturally supports a model parallel training strategy.
The proposed approach can significantly accelerate the required training time compared to the global model.
Results show that the proposed approach can also help to improve the accuracy of the underlying classification problem.
arXiv Detail & Related papers (2023-02-13T18:06:59Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
Topological data analysis provides compact, noise-robust representations of complex structures.
Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture.
In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification.
arXiv Detail & Related papers (2022-12-01T02:05:44Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns.
CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-09-27T12:39:46Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Zero-sample surface defect detection and classification based on
semantic feedback neural network [13.796631421521765]
We propose an Ensemble Co-training algorithm, which adaptively reduces the prediction error in image tag embedding from multiple angles.
Various experiments conducted on the zero-shot dataset and the cylinder liner dataset in the industrial field provide competitive results.
arXiv Detail & Related papers (2021-06-15T08:26:36Z) - Convolutional Dynamic Alignment Networks for Interpretable
Classifications [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA-Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which linearly transform their input with weight vectors that dynamically align with task-relevant patterns.
CoDA-Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-03-31T18:03:53Z) - PK-GCN: Prior Knowledge Assisted Image Classification using Graph
Convolution Networks [3.4129083593356433]
Similarity between classes can influence the performance of classification.
We propose a method that incorporates class similarity knowledge into convolutional neural networks models.
Experimental results show that our model can improve classification accuracy, especially when the amount of available data is small.
arXiv Detail & Related papers (2020-09-24T18:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.