An Efficient Framework for Enhancing Discriminative Models via Diffusion Techniques
- URL: http://arxiv.org/abs/2412.09063v2
- Date: Fri, 13 Dec 2024 02:41:26 GMT
- Title: An Efficient Framework for Enhancing Discriminative Models via Diffusion Techniques
- Authors: Chunxiao Li, Xiaoxiao Wang, Boming Miao, Chuanlong Xie, Zizhe Wang, Yao Zhu,
- Abstract summary: We propose the Diffusion-Based Discriminative Model Enhancement Framework (DBMEF)
This framework seamlessly integrates discriminative and generative models in a training-free manner.
DBMEF can effectively enhance the classification accuracy and capability of discriminative models in a plug-and-play manner.
- Score: 12.470257882838126
- License:
- Abstract: Image classification serves as the cornerstone of computer vision, traditionally achieved through discriminative models based on deep neural networks. Recent advancements have introduced classification methods derived from generative models, which offer the advantage of zero-shot classification. However, these methods suffer from two main drawbacks: high computational overhead and inferior performance compared to discriminative models. Inspired by the coordinated cognitive processes of rapid-slow pathway interactions in the human brain during visual signal recognition, we propose the Diffusion-Based Discriminative Model Enhancement Framework (DBMEF). This framework seamlessly integrates discriminative and generative models in a training-free manner, leveraging discriminative models for initial predictions and endowing deep neural networks with rethinking capabilities via diffusion models. Consequently, DBMEF can effectively enhance the classification accuracy and generalization capability of discriminative models in a plug-and-play manner. We have conducted extensive experiments across 17 prevalent deep model architectures with different training methods, including both CNN-based models such as ResNet and Transformer-based models like ViT, to demonstrate the effectiveness of the proposed DBMEF. Specifically, the framework yields a 1.51\% performance improvement for ResNet-50 on the ImageNet dataset and 3.02\% on the ImageNet-A dataset. In conclusion, our research introduces a novel paradigm for image classification, demonstrating stable improvements across different datasets and neural networks. The code is available at https://github.com/ChunXiaostudy/DBMEF.
Related papers
- MBInception: A new Multi-Block Inception Model for Enhancing Image Processing Efficiency [3.3748750222488657]
This article introduces an innovative image classification model that employs three consecutive inception blocks within a convolutional neural networks framework.
We compare our model with well-established architectures such as Visual Geometry Group, Residual Network, and MobileNet.
The outcomes reveal that our novel model consistently outperforms its counterparts across diverse datasets.
arXiv Detail & Related papers (2024-12-18T10:46:04Z) - Self-Supervised Learning in Deep Networks: A Pathway to Robust Few-Shot Classification [0.0]
We first pre-train the model with self-supervision to enable it to learn common feature expressions on a large amount of unlabeled data.
Then fine-tune it on the few-shot dataset Mini-ImageNet to improve the model's accuracy and generalization ability under limited data.
arXiv Detail & Related papers (2024-11-19T01:01:56Z) - Domain-decomposed image classification algorithms using linear discriminant analysis and convolutional neural networks [0.0]
Two different domain decomposed CNN models are experimentally compared for different image classification problems.
The resulting models show improved classification accuracies compared to the corresponding, composed global CNN model.
A novel decomposed LDA strategy is proposed which also relies on a localization approach and which is combined with a small neural network model.
arXiv Detail & Related papers (2024-10-30T18:07:12Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Diffusion-TTA: Test-time Adaptation of Discriminative Models via
Generative Feedback [97.0874638345205]
generative models can be great test-time adapters for discriminative models.
Our method, Diffusion-TTA, adapts pre-trained discriminative models to each unlabelled example in the test set.
We show Diffusion-TTA significantly enhances the accuracy of various large-scale pre-trained discriminative models.
arXiv Detail & Related papers (2023-11-27T18:59:53Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid
Models [4.189643331553922]
We propose a deep invertible hybrid model which integrates discriminative and generative learning at a latent space level for semi-supervised few-shot classification.
Our main originality lies in our integration of these components at a latent space level, which is effective in preventing overfitting.
arXiv Detail & Related papers (2021-05-22T05:55:16Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.