論文の概要: Continuous Evolution of Digital Twins using the DarTwin Notation
- arxiv url: http://arxiv.org/abs/2410.23389v1
- Date: Wed, 30 Oct 2024 18:47:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 17:02:04.240201
- Title: Continuous Evolution of Digital Twins using the DarTwin Notation
- Title(参考訳): DarTwin表記を用いたデジタル双生児の連続的進化
- Authors: Joost Mertens, Stefan Klikovits, Francis Bordeleau, Joachim Denil, Øystein Haugen,
- Abstract要約: 本稿では,ユーザの要求と優先順位の進化を通じて,DT(s)の集合を維持するという課題に取り組む。
我々は2つのコントリビューションを提供している: (i) 双子のシステム、その目的、特性、実装の推論を可能にする視覚的表記形式であるDarTwinを開発し、 (ii) DTシステムの進化を記述した一連のアーキテクチャ変換を導入する。
- 参考スコア(独自算出の注目度): 1.348000091881055
- License:
- Abstract: Despite best efforts, various challenges remain in the creation and maintenance processes of digital twins (DTs). One of those primary challenges is the constant, continuous and omnipresent evolution of systems, their user's needs and their environment, demanding the adaptation of the developed DT systems. DTs are developed for a specific purpose, which generally entails the monitoring, analysis, simulation or optimization of a specific aspect of an actual system, referred to as the actual twin (AT). As such, when the twin system changes, that is either the AT itself changes, or the scope/purpose of a DT is modified, the DTs usually evolve in close synchronicity with the AT. As DTs are software systems, the best practices or methodologies for software evolution can be leveraged. This paper tackles the challenge of maintaining a (set of) DT(s) throughout the evolution of the user's requirements and priorities and tries to understand how this evolution takes place. In doing so, we provide two contributions: (i) we develop DarTwin, a visual notation form that enables reasoning on a twin system, its purposes, properties and implementation, and (ii) we introduce a set of architectural transformations that describe the evolution of DT systems. The development of these transformations is driven and illustrated by the evolution and transformations of a family home's DT, whose purpose is expanded, changed and re-prioritized throughout its ongoing lifecycle. Additionally, we evaluate the transformations on a lab-scale gantry crane's DT.
- Abstract(参考訳): 最善の努力にもかかわらず、デジタル双生児(DT)の作成と保守プロセスには様々な課題が残っている。
これらの主な課題の1つは、システムの連続的、連続的、そして全表現的進化、ユーザのニーズとその環境であり、開発済みのDTシステムの適応を要求している。
DTは特定の目的のために開発され、一般に、実際のツイン(AT)と呼ばれる実際のシステムの特定の側面の監視、分析、シミュレーション、最適化を必要とする。
したがって、ツイン系が変化すると、AT自体が変化するか、DTのスコープ/目的が変更された場合、DTは通常、ATと密接な同期で進化する。
DTはソフトウェアシステムなので、ソフトウェア進化のためのベストプラクティスや方法論を活用できます。
本稿では、ユーザの要求と優先順位の進化を通じてDT(セット)を維持することの課題に取り組み、この進化がどのように起こるのかを理解しようとする。
そうすることで、私たちは2つのコントリビューションを提供します。
(i)双対システム,その目的,特性,実装の推論を可能にする視覚的表記形式であるDarTwinを開発し,その実装について述べる。
(II)DTシステムの進化を記述した一連のアーキテクチャ変換を導入する。
これらのトランスフォーメーションの開発は、家庭のDTの進化とトランスフォーメーションによって推進され、説明され、その目的は、継続的なライフサイクルを通じて拡張され、変更され、再優先順位付けされる。
さらに,実験室規模のガントリクレーンのDTの変形について検討した。
関連論文リスト
- Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DT)は、現実世界のシステムの状態と時間力学をシミュレートする。
DTは、しばしばデータスカース設定で目に見えない条件に一般化するのに苦労します。
本稿では,HDTwinsを自律的に提案し,評価し,最適化するための進化的アルゴリズム(textbfHDTwinGen$)を提案する。
論文 参考訳(メタデータ) (2024-10-31T07:28:22Z) - Digital Twins in Additive Manufacturing: A Systematic Review [0.4218593777811082]
デジタルツイン (DT) は添加性製造 (AM) で人気が高まっている
機械学習(ML)、拡張現実(AR)、シミュレーションベースのモデルは、DTの開発において重要な役割を果たす。
論文 参考訳(メタデータ) (2024-09-02T00:11:48Z) - Sustainable Diffusion-based Incentive Mechanism for Generative AI-driven Digital Twins in Industrial Cyber-Physical Systems [65.22300383287904]
産業用サイバー物理システム(ICPS)は、現代の製造業と産業にとって不可欠なコンポーネントである。
製品ライフサイクルを通じてデータをデジタル化することで、ICPSのDigital Twins(DT)は、現在の産業インフラからインテリジェントで適応的なインフラへの移行を可能にします。
産業用IoT(Industrial Internet of Things, IIoT)デバイスを利用すれば、DTを構築するためのデータを共有するメカニズムは、悪い選択問題の影響を受けやすい。
論文 参考訳(メタデータ) (2024-08-02T10:47:10Z) - Constructing and Evaluating Digital Twins: An Intelligent Framework for DT Development [11.40908718824589]
デジタルツインズ(DT)の開発は、制御されたデジタル空間における複雑なシステムをシミュレートし最適化するための変革的な進歩を表している。
本稿では,アルゴリズム性能試験におけるDTの精度と有用性を高めるために,DTの構築と評価のためのインテリジェントなフレームワークを提案する。
本稿では,Deep Learning-based policy gradient techniqueを統合してDTパラメータを動的に調整し,物理システムのデジタル複製における高い忠実性を確保する手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T01:45:18Z) - Image-based Deep Learning for Smart Digital Twins: a Review [0.0]
スマートデジタルツイン(SDT)は、複雑な物理的システムの振る舞いを仮想的に再現し、予測するためにますます利用されている。
ディープラーニング(DL)モデルは、SDTの機能を大幅に強化した。
本稿では,画像ベースSDTの開発における様々なアプローチと課題について論じる。
論文 参考訳(メタデータ) (2024-01-04T20:17:25Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
目標ドメインの継続的な変更に事前訓練されたモデルを適用するために、連続的なテスト時間適応タスクを提案する。
我々はCTTA用のVisual Domain Adapter (ViDA) を設計し、ドメイン固有知識とドメイン共有知識の両方を明示的に扱う。
提案手法は,CTTAタスクの分類とセグメント化の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-07T11:18:53Z) - Through-life Monitoring of Resource-constrained Systems and Fleets [0.0]
デジタルツイン(Digital Twin、DT)は、経済、社会的、商業的な価値を付加する決定を行うための情報を提供する物理システムのシミュレーションである。
リソース制約のあるシステムでは、オンボード学習やオフボードデータ転送といった課題のため、DTの更新は簡単ではない。
本稿では,システムヘルスモニタリングを目的とした資源制約付きシステムのデータ駆動型DTを更新するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-03T09:26:18Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
我々は、オンザフライで調整可能な判別器は、そのような時間変化に適応できると論じる。
総合的な実証研究により、提案したトレーニング戦略がDynamicDと呼ばれ、追加のコストやトレーニング目標を発生させることなく、合成性能を向上させることが確認された。
論文 参考訳(メタデータ) (2022-09-20T17:57:33Z) - Complex Evolutional Pattern Learning for Temporal Knowledge Graph
Reasoning [60.94357727688448]
TKG推論は、歴史的KG配列を考えると、将来の潜在的な事実を予測することを目的としている。
進化のパターンは、長さの多様性と時間変化の2つの側面において複雑である。
本稿では,CEN(Complex Evolutional Network)と呼ばれる新しいモデルを提案する。CNN(Convolutional Neural Network)を用いて,長さの異なる進化パターンを扱う。
論文 参考訳(メタデータ) (2022-03-15T11:02:55Z) - Generalized Decision Transformer for Offline Hindsight Information
Matching [16.7594941269479]
本稿では、後視情報マッチング(HIM)問題を解くための一般化決定変換器(GDT)を提案する。
特徴関数と反因果アグリゲータの異なる選択が, 将来の異なる統計値に適合する新しいカテゴリーDT (CDT) と双方向DT (BDT) にどのように寄与するかを示す。
論文 参考訳(メタデータ) (2021-11-19T18:56:13Z) - Digital Twins: State of the Art Theory and Practice, Challenges, and
Open Research Questions [62.67593386796497]
この研究は、様々なDT機能と現在のアプローチ、デジタルツインの実装と導入の遅れの背景にある欠点と理由を探求する。
この遅延の主な理由は、普遍的な参照フレームワークの欠如、ドメイン依存、共有データのセキュリティ上の懸念、デジタルツインの他の技術への依存、定量的メトリクスの欠如である。
論文 参考訳(メタデータ) (2020-11-02T19:08:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。