論文の概要: VISUALCODER: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning
- arxiv url: http://arxiv.org/abs/2410.23402v2
- Date: Sun, 01 Dec 2024 07:55:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:56:02.883326
- Title: VISUALCODER: Guiding Large Language Models in Code Execution with Fine-grained Multimodal Chain-of-Thought Reasoning
- Title(参考訳): VISUALCoDER: きめ細かいマルチモーダル連鎖推論によるコード実行における大規模言語モデルの誘導
- Authors: Cuong Chi Le, Hoang-Chau Truong-Vinh, Huy Nhat Phan, Dung Duy Le, Tien N. Nguyen, Nghi D. Q. Bui,
- Abstract要約: 視覚制御フローグラフ(CFG)を用いたマルチモーダル・チェーン・オブ・ソート(CoT)推論を統合することで,コード推論を強化する,シンプルかつ効果的なアプローチであるVisual Coderを導入する。
コードスニペットを対応するCFGと整合させることで、Visual Coderは実行フローに関する深い洞察を提供し、コードの振る舞いをより正確に予測できる。
実験により,視覚的CFGによるLLMの増大は,コード推論タスクにおいて,テキストベースのCFG記述を著しく上回ることを示した。
- 参考スコア(独自算出の注目度): 10.70881967278009
- License:
- Abstract: Predicting program behavior and reasoning about code execution remain significant challenges in software engineering, particularly for large language models (LLMs) designed for code analysis. While these models excel at understanding static syntax, they often struggle with dynamic reasoning tasks. We introduce Visual Coder, a simple yet effective approach that enhances code reasoning by integrating multimodal Chain-of-Thought (CoT) reasoning with a visual Control Flow Graph (CFG). By aligning code snippets with their corresponding CFGs, Visual Coder provides deeper insights into execution flow, enabling more accurate predictions of code behavior. Our experiments demonstrate that augmenting LLMs with visual CFGs significantly outperforms text-based CFG descriptions in code reasoning tasks. We address challenges in multimodal CoT integration through a reference mechanism, ensuring consistency between code and its execution path, thereby improving performance in program behavior prediction, error detection, and output generation.
- Abstract(参考訳): プログラムの振る舞いの予測とコード実行に関する推論は、特にコード解析のために設計された大規模言語モデル(LLM)において、ソフトウェア工学において重要な課題である。
これらのモデルは静的構文の理解に長けているが、動的推論タスクに苦労することが多い。
視覚制御フローグラフ(CFG)にマルチモーダル・チェーン・オブ・ソート(CoT)推論を統合することで,コード推論を強化する,シンプルで効果的なアプローチであるVisual Coderを導入する。
コードスニペットを対応するCFGと整合させることで、Visual Coderは実行フローに関する深い洞察を提供し、コードの振る舞いをより正確に予測できる。
実験により,視覚的CFGによるLLMの増大は,コード推論タスクにおいて,テキストベースのCFG記述を著しく上回ることを示した。
我々は,参照機構によるマルチモーダルCoT統合の課題に対処し,コードと実行経路の整合性を確保し,プログラム動作予測,エラー検出,出力生成の性能を向上させる。
関連論文リスト
- Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - CodeMind: A Framework to Challenge Large Language Models for Code Reasoning [1.4027589547318842]
大規模言語モデル(LLM)のコード推論能力を評価するために設計されたフレームワークであるCodeMindを紹介する。
CodeMindは、Independent Execution Reasoning (IER)、Dependent Execution Reasoning (DER)、Specification Reasoning (SR)の3つのコード推論タスクをサポートしている。
論文 参考訳(メタデータ) (2024-02-15T02:24:46Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - CompCodeVet: A Compiler-guided Validation and Enhancement Approach for
Code Dataset [12.58750209611099]
数十億のパラメータを持つモデルでさえ、多段階の推論を必要とするタスクの課題に直面します。
CompCodeVetはコンパイル不能なコードからコンパイル可能なコードを生成するためのコンパイラ誘導のCoTアプローチである。
論文 参考訳(メタデータ) (2023-11-11T08:21:52Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - AI Chain on Large Language Model for Unsupervised Control Flow Graph
Generation for Statically-Typed Partial Code [21.423928174875844]
制御フローグラフ(CFG)は、プログラムの振る舞いを可視化、理解、分析するために不可欠である。
本稿では,事前学習された大規模言語モデル(LLM)の誤り耐性と理解能力を活用してCFGを生成する手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T14:52:59Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
コードインテリジェンスのトレーニング済みモデルのほとんどは実行トレースを無視しており、ソースコードと構文構造のみに依存している。
我々は,大規模かつ現実的なPythonデータセットとコード実行タスクを作成するために,突然変異に基づくデータ拡張手法を開発した。
次に、コード実行事前学習とカリキュラム学習を活用して意味理解を強化するトランスフォーマーモデルであるCodeExecutorを提案する。
論文 参考訳(メタデータ) (2023-05-08T10:00:05Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z) - Learning to Extend Program Graphs to Work-in-Progress Code [31.235862838381966]
プログラムグラフの概念を、トークン間のエッジ関係を予測することを学ぶことによって、プログレッシブ・イン・プログレッシブ・コードに拡張する。
作業中のシナリオにおいて、コード補完のタスクと変数の不正使用のローカライズと修復について検討する。
我々は、細調整されたエッジを持つ関係認識モデルのトレーニングが、両タスクのパフォーマンスを継続的に向上させることを示した。
論文 参考訳(メタデータ) (2021-05-28T18:12:22Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
本稿では,コード固有の構造を考慮したプログラミング言語の事前学習モデルであるGraphCodeBERTを提案する。
これは変数間の"where-the-value-comes-from"の関係をエンコードするコードのセマンティックレベルの構造です。
コード検索,クローン検出,コード翻訳,コード改良の4つのタスクにおいて,本モデルを評価する。
論文 参考訳(メタデータ) (2020-09-17T15:25:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。